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INTRODUCTION
Remote sensing has revolutionized how fisheries biologists 

study ecological patterns and processes at broad spatial scales. 
Remote sensing data have been critical in uncovering the funda-
mental relationships between fish distributions and their surround-
ing landscapes (Johnson and Gage 1997), and they have informed 
conservation needs for freshwater systems that often contain high 
levels of biodiversity or harbor important recreational and com-
mercial fisheries (Hughes et al. 2006; Wirth et al. 2012). Some 
derived data sets, defined as data sets secondarily derived from 
primary remote sensing data such as the National Land Cover 
Dataset (NLCD) derived from Landsat multispectral data, are 
now routinely used to understand how land use and land cover 
influence aquatic habitats and biota (Hughes et al. 2006). Thermal 
sensors are also widely used to understand temperature influenc-
es on fish stocks across aquatic landscapes (Dugdale 2016). The 
number of potentially useful remotely sensed products of increas-
ingly high spatial and temporal resolution has proliferated in the 
last decade, and many of these products are not well known in 
the fisheries community. At the same time, new tools render these 
data sets more accessible to those without specialized training. In 
short, the field is changing dramatically. Our goal in this article is 
to demystify the field of remote sensing for freshwater fisheries 
biologists by exploring recent applications of airborne and space-
borne remote sensing (as opposed to ground-based or underwater 
sensors) to freshwater fisheries and highlighting emerging tools 
that facilitate broader use.  

To start, rapid technological advances have produced remote 
sensors that collect data at higher spatial, temporal, and spectral 
resolutions than what were collected just a decade ago (Figure 
1), and these data are becoming increasingly accessible due to af-
fordable or free, easy-to-use archives and data delivery platforms. 
This, along with the increasing availability of custom data sets, 
has improved the ability to match remote sensing data to specific 
fisheries questions over both space and time (Table 1). For exam-
ple, many satellite-based sensors collect data at the same location 
on Earth at a spatial resolution of several meters every few days 
(see Supplementary File: Table S1). Microsatellite companies, 
such as Planet Labs (San Francisco, California), process custom 
orders for high-resolution imagery of specific places on Earth, 
and many sensors, such as forward-looking infrared sensors, are 
routinely deployed on aircraft for custom applications (Vatland 
et al. 2015). Hyperspectral sensors containing hundreds of high-
resolution (narrow) spectral bands are becoming more common 
(versus multispectral sensors with three or four low-resolution 
[broad] spectral bands), and increased spectral resolution has 
allowed more precise identification of specific aquatic habitats 
from imagery, such as identifying wetland vegetation to the spe-
cies level (Adam et al. 2010). 

Concurrently, new policies and capabilities are rapidly 
overcoming historical challenges to the use of remote sensing 
imagery: accessibility and cost of imagery archives; expertise 

Remote sensing has been pivotal to our understanding of freshwater fisheries, and we review this rapidly changing field with a 
focus on satellite and airborne applications. Historical applications emphasized spatial variation in the environment (e.g., water-
shed land use and in situ primary productivity), but improved access to imagery archives facilitates better change detection over 
time. New sensor platforms and technology now yield imagery with higher spatial, temporal, and spectral resolutions than ever 
before, which has accelerated development of remote sensing products that more accurately characterize aquatic environments. 
Free access to imagery archives, cloud computing, and availability of derived products linked to national hydrography databases 
are all removing historical barriers to its use by fisheries professionals. These advances in remote sensing have allowed new ques-
tions to be answered at finer spatial resolutions across broader landscapes and longer time frames, providing a new big-picture 
perspective to freshwater fisheries conservation and management.

needed to process raw imagery and apply it to specific problems; 
and computer storage and computational power, especially 
for applications covering large spatial extents (Rose et al. 
2014; Turner et al. 2015). For example, since 2008, the U.S. 
Geological Survey (USGS) and National Aeronautics and Space 
Administration (NASA) have allowed free access to Landsat 
archives dating back to 1972, and the U.S. National Oceanic 
and Atmospheric Administration provides Advanced Very 
High Resolution Radiometer (AVHRR) data beginning in 1981 
(Turner et al. 2015). Similarly, free cloud-based data storage 
and computing platforms such as Google Earth Engine and 
NASA Earth Exchange facilitate access to satellite imagery and 
geospatial archives and have stimulated analytical applications 
of archived data such as Climate Engine (Huntington et al. 2017) 
and Global Surface Water Explorer (Pekel et al. 2016). 

Using remote sensing for different fisheries applications re-
quires careful consideration of the varying characteristics of re-
mote sensing data and derived products. For many sensors, there 
is a tradeoff between spatial and temporal resolution, and use of 
specific imagery should be determined by the spatial and tempo-
ral resolution and extent of the question at hand (Figure 2). New 
products continue to be derived from long-standing satellite mis-
sions (e.g., new versions of NLCD from Landsat), and new satel-
lite missions come with their own derived products (e.g., Global 
Vegetation Index from Sentinel-3). Finally, satellite imagery and 
derived products continue to be used in various image classifica-
tion and statistical models that quantify elements of freshwater 
ecosystems, and these uses have proliferated in the last decade 
(Palmer et al. 2015; Dörnhöfer and Oppelt 2016; Dugdale 2016).

A REVIEW OF FISHERIES APPLICATIONS
Land Cover and Land Use

The most widely used remote sensing data in freshwater sys-
tems have been satellite-derived measures of land cover and land 
use. Landsat-derived NLCD or USGS National Gap Analysis 
Program land cover data sets (30-m resolution) have been com-
monly used to link watershed land cover (e.g., coniferous for-
est) and land uses (e.g., urban, agriculture) to the distribution and 
abundance of aquatic organisms (Hughes et al. 2006). Freshwater 
fish ecologists are often particularly interested in riparian vegeta-
tion (Figure 3; Macfarlane et al. 2016), which can be difficult to 
characterize adequately at the 30-m resolution of NLCD (Goetz 
2006). Consequently, airborne applications that yield multispec-
tral data at high spatial resolutions (1 m or less) have been used, 
albeit at smaller spatial extents and with substantial image pro-
cessing times. For example, Dauwalter et al. (2015) used airborne 
National Agriculture Imagery Program (NAIP) imagery (1-m 
spatial resolution) in a supervised, object-oriented classifica-
tion—whereby the user inputs the classes to be defined using the 
spectral and textural statistical patterns in an image—to identify 
woody vegetation in narrow riparian zones in the western Unit-
ed States that was more predictive of Columbia River Redband 
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Figure 1. Sentinel 2 satellite true color images (10-m resolution) of the Detroit River delta at the confluence with Lake Erie on 
June 29, 2016 (top panel), and the confluence of the Tennessee River (south) with the Ohio River (north) on February 6, 2016 
(bottom panel). Both images were downloaded using Copernicus Open Access Hub.
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Table 1. Applications of remote sensing platforms (satellites and sensors) and derived data used to describe freshwater ecosystem components. 

Indirect Direct Satellite/
sensor

Derived product Application Reference

Climate

Air temperature Stream         
temperature

Terra/Aqua 
MODIS

Land surface 
 temperature

Model daily stream temperature Falke et al. (2013)

Precipitation Streamflow Multiple inputs 
into REGCM3 
climate model

Variable infiltration 
capacity hydrologic 
metrics

Winter flood frequency effects on 
salmonid occurrence

Wenger et al. (2011)

Watershed

Elevation Valley confine-
ment

Multiple sources National elevation data 
set

Identify habitat of nonnative 
species

Wenger et al. (2011)

Land use/cover Converted lands Landsat 
Thematic 
Mapper (TM)

NLCD Identify effect of land conversion 
on fishes

Hughes et al. (2006)

Terrestrial 
vegetation 
productivity

NPP Terra MODIS NPP Predict global patterns in fish     
species richness

Pelayo-Villamil et al. 
(2015)

Organic input Landsat Leica 
ADS40

Organic matter export Predict fish growth from terrestrial 
organic matter export to lakes

Tanentzap et al. 
(2014)

Chlorophyll-a AVHRR NDVI Predict anadromy from lake 
productivity

Finstad and Hein 
(2012)

Riparian land use/
cover

Stream buffer 
vegetation 
height and 
composition

Various Various Characterize riparian vegetation Goetz (2006)

Vegetation coverage Solar radiation Landsat TM and 
EMT+

Custom land cover map Identify wildfire impacts on stream 
temperature

Isaak et al. (2010)

Riparian vegetation Vegetation 
structure

Quickbird Custom vegetation map Characterize riparian vegetation 
structure 

Johansen et al. 
(2007)

Riparian vegetation Vegetation type GeoEye Custom native and non-
native vegetation map

River restoration prioritization Macfarlane et al. 
(2017)

Woody riparian 
vegetation

Habitat condi-
tion

Airborne 
multispectral

NAIP Characterize riparian and trout 
habitat in desert streams

Dauwalter et al. 
(2015)

In-channel 
vegetation

Fluvial dynamics Airborne 
and SPOT 
multispectral

Custom vegetation map Vegetation dynamics Hervouet et al. 
(2011)

Shoreline 
development

Number of 
docks

Airborne 
multispectral

NAIP Quantify shoreline development Beck et al. (2013)

In situ

Stream temperature Thermal habitat Airborne 
Therma-CAM 
SC640

Thermal infrared Thermal habitat heterogeneity Vatland et al. (2015)

River altimetry River gaging ENVISAT and 
JASON

Microwave Satellite river gaging Van Dijk et al. (2016)

Reservoir surface 
temperature

Thermal habitat 
and fish growth 
potential

Airborne TIR; 
Landsat 5 TM

Thermal infrared; ther-
mal band

Anthropogenic impact to fish 
growth potential

Budy et al. (2011)

River surface ice Upwelling RADARSAT-1 
SAR; ALOS 
AVNIR-2

C-band; multiband Identify upwelling areas and 
salmon spawning habitat

Wirth et al. (2012)

Aquatic macrophyte Larval fish 
habitat

Landsat TM, 
EMT+

Enhanced Vegetation 
Index

Aquatic macrophyte dynamics and 
fish recruitment

Massicotte et al. 
(2015)

Aquatic macrophyte Physical habitat 
structure

Landsat TM, 
EMT+, MSS

NDVI, normalized dif-
ference water index, 
reflectance

Temporal trends in aquatic 
vegetation 

Zhao et al. (2013)

Channel elevation Channel 
 morphology

Experimental 
Advanced 
Airborne 
Research LiDAR 

Elevation Geomorphic controls on redd 
distribution

McKean et al. (2008)

D
ow

nl
oa

de
d 

by
 [

17
4.

22
4.

35
.2

1]
 a

t 1
5:

35
 2

4 
O

ct
ob

er
 2

01
7 



530 Fisheries | Vol. 42 • No. 10 • October  2017

Figure 2. Contrast of spatial and temporal resolution of Landsat 5 Thematic Mapper (left panel: 30-m spatial and ~16-day tem-
poral resolutions) and Terra Moderate Resolution Imaging Spectroradiometer (right panel: 500-m spatial and 1-day temporal 
resolutions) imagery during May 1, 2011, in upper Salmon Falls Creek watershed, Nevada. Top panels show surface reflectance 
formatted as natural color images. Bottom panels show derived snow cover data products; bottom left panel is the Landsat 
image processed using the Fmask algorithm, and bottom right panel is Terra-MODIS based NASA/USGS Land Processes Distrib-
uted Active Archive Center 1-km resolution Science Data Set. Note that cloud cover and cloud shadows result in unusable snow 
cover data (invalid observations) in both data products. Both images were accessed and processed using Google Earth Engine.

Trout Oncorhynchus mykiss gairdneri distribution and abundance 
than field data. Others have used high-resolution NAIP imagery 
to quantify the number of docks as an index of shoreline develop-
ment, a known stressor in glacial lakes (Beck et al. 2013).

New hyperspectral imagery has helped to overcome some of 
the historical limitations of using multispectral imagery for veg-
etation mapping. Multispectral sensors (e.g., Landsat Operational 
Land Imager) measure electromagnetic radiation in only a few 
spectral bands, but hyperspectral sensors (e.g., Earth Observ-
ing-1 Hyperion sensor) can measure hundreds or thousands of 
spectral bands, potentially allowing species-level identification of 
dominant plants instead of just generalized vegetation types. For 
example, Hestir et al. (2008) used airborne hyperspectral data at 
a 3-m spatial resolution to map several invasive aquatic plants 
in the Sacramento–San Joaquin River delta. Better resolution in 
future land cover products will yield a more nuanced understand-
ing of how vegetation and land use influence aquatic ecosystems. 

In addition to mapping vegetation, remote sensing has been 
used to inventory and monitor water bodies. Verpoorter et al. 
(2014) used Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 
and the NASA Shuttle Radar Topography Mission elevation data 
to develop a global inventory of lakes that contains geographic 

and morphometric data. Multiple remote sensing products have 
also been used to inventory and monitor wetlands over broad ar-
eas (Adam et al. 2010). These remote sensing monitoring efforts 
will be key to tracking changes in freshwater resources over time, 
as shown by Donchyts et al. (2016), who used 30-m Landsat data 
to monitor water-to-land and land-to-water conversions globally 
from 1985 to 2015 due to water use, reservoir construction, sea 
level rise, and myriad other factors. New satellite missions, such 
as Sentinel-2 launched by the European Space Agency in 2015, 
are designed specifically for global monitoring of vegetation, soil, 
and water.

Topography and Geomorphology
Watershed topography reflects underlying geology and cli-

mate and, in turn, influences hydrology and other aquatic eco-
system components (Johnson and Gage 1997). Historically, wa-
tershed topography and elevation were derived from topographic 
maps, which were created from stereoscopic aerial photo inter-
pretation. Ten-meter resolution digital elevation models (DEMs) 
derived from older 1:24,000 topographic maps are commonly 
used to characterize watershed topography and elevation that re-
peatedly have shown to correlate with fish distributions (Hughes 
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et al. 2006). Small-scale physical features of streams such as un-
confined valley bottoms that can be identified using DEMs have 
also been linked to fish distributions (Wenger et al. 2011). More 
recently, DEMs are being created using satellite-based sensors. 
For example, WorldDEM is a commercially available (Airbus 
Defense and Space, Toulouse, France) global DEM with 12-m 
spatial resolution (2-m relative vertical accuracy) created from 
Synthetic Aperture Radar (SAR) data collected by German Tan-
DEM-X and TerraSAR-X satellites. These types of data will be 
useful in quantifying changes in elevation and topography over 
time in dynamic landscapes.

High-resolution hyperspectral imagery has also been used 
to map channel morphology (Leglieter et al. 2004). Marcus et 
al. (2003) used airborne, 128-band hyperspectral imagery and 
a supervised image classification to map instream habitat types 
(e.g., riffles, glides, pools) in Wyoming. Hugue et al. (2016) used 
multispectral WorldView II data (2-m resolution) in a hydraulic 
model to map spatial heterogeneity in physical habitat across 
the Kiamika River, Quebec, Canada. Continued advancement in 
hyperspectral sensors, such as an increased number of spectral 
bands, may help overcome some limitations of habitat mapping 
below surface waters resulting from optical properties, turbidity, 
and surface turbulence (Leglieter et al. 2004; Hestir et al. 2015).

The three-dimensional structure of terrestrial and aquatic 
ecosystems can be mapped using Light Detection and Ranging 
(LiDAR), a form of laser altimetry yielding detailed data (i.e., 
<0.5 m pixels) on vegetation height and ground elevation simul-
taneously (Figure 4; Vierling et al. 2008). In a novel application, 
Kasprak et al. (2012) used airborne LiDAR data to map large 
wood recruitment potential in the Narraguagus River, Maine, to 
understand how large wood deficiency may be linked to declining 
Atlantic Salmon Salmo salar. Unlike traditional LiDAR, green 
LiDAR can penetrate surface water and has been used to map 
floodplain and underwater stream channel characteristics impor-
tant to spawning salmon (McKean et al. 2008). Most LiDAR data 
have been collected from airborne sensors through expensive 
custom orders. However, spaceborne LiDAR sensors now exist, 
such as on NASA’s ICESat mission (2003–2010), and data from 
those sensors have been used to develop a global DEM (70-m 
resolution) and other products; the second ICESat-2 mission is 
planned for 2018. Continued deployment of LiDAR sensors on 
space missions will increase the spatial coverage, resolution, and 
accessibility of LiDAR data that are typically collected from air-
borne platforms for specific applications.

Climate
Many remote sensing platforms collect weather and climate 

data important to aquatic ecosystems. For example, the AVHRR 
instrument aboard the Polar-Orbiting Operational Environmen-
tal Satellite collects multispectral data twice daily to character-
ize cloud cover, surface temperatures (water and land), vegeta-
tion, snow, and ice. Satellite data often serve as inputs into other 
modeling systems, such as general circulation models (also called 
global climate models) that predict air temperature and precipita-
tion. Climate data can be used along with soil, vegetation, and 
topography as inputs for hydrologic models, such as the variable 
infiltration capacity model (Liang et al. 1994).

Water temperature strongly influences aquatic ecosystem 
structure and function, including the physiology of ectothermic 
organisms. Until recently, air temperature was commonly used as 
an imperfect surrogate for stream and lake temperatures that did 
not exist across broad scales (e.g., Wenger et al. 2011). However, 
stream temperatures are now being accurately predicted across 

broad spatial domains from in situ observations and remotely 
sensed covariates using statistical models. For example, land 
surface temperatures measured by Moderate Resolution Imag-
ing Spectroradiometer (MODIS) thermal sensors have been used 
to model daily stream temperatures (1-km resolution) across the 
John Day River basin, Oregon, an important river system for tem-
perature-sensitive and imperiled salmonids (Falke et al. 2013). 
The NorWeST stream temperature dataset (Isaak et al. 2016) 
includes mean August stream temperatures every 1-km across 
much of the western United States as predicted from topography, 
vegetation, and climate (data from the NASA Shuttle Radar To-
pography Mission, Landsat, and third-generation regional climate 
modeling, respectively), and the data set has been used to predict 
future cold-water refuges for fish (Falke et al. 2015; Isaak et al. 
2015).

Surface water temperatures are increasingly being measured 
directly using airborne and spaceborne infrared sensors (Dugdale 
2016). For example, Tonolla et al. (2012) linked the dynamics 
of fish distributions in floodplain areas of the Oder River, Ger-
many, to thermal gradients and patches quantified using airborne 
forward-looking infrared. This technology has also been used to 
characterize salmon and trout habitat (Vatland et al. 2015) and 
map fish growth potential in reservoirs (Budy et al. 2011). Spa-
ceborne thermal sensors have been used to document global in-
creases of 0.045°C ± 0.011°C/year in large lake surface tempera-
tures, with higher warming rates at higher latitudes (Schneider 
and Hook 2010).

Ice is a prominent feature of aquatic systems in cold climates. 
Seasonal coverage, type, and thickness of ice can be measured 
using SAR because ice produces a unique backscatter signature 
in radio and microwave signals (Duguay et al. 2015). Spaceborne 
radar data have been used to predict Chum Salmon O. keta spawn-
ing habitat based, in part, on areas of groundwater upwelling as 
indicted by persistent ice-free areas (Wirth et al. 2012) and identi-
fy Broad Whitefish Coregonus nasus overwintering habitat based 
on pool depth in ice-covered rivers (Brown et al. 2010).

Hydrology plays a central role in stream ecosystems, and re-
mote sensing has long been used for hydrologic modeling. Cli-
mate data, along with other remotely sensed data, are inputs for 
macroscale hydrologic models (Liang et al. 1994) that are then 
downscaled to estimate ecological flows in small streams where 
they have been used to link the frequency of winter high flows to 
the distribution of fall spawning salmonids (Wenger et al. 2011). 
In Rocky Mountain streams designated as critical habitat for Bull 
Trout Salvelinus confluentus, flow intermittency was predicted 
using snowpack persistence into the summer as measured from 
Landsat imagery (Sando and Blasch 2015).

Primary Productivity
Primary productivity influences freshwater fish production 

and is typically estimated using in situ measurement of biogeo-
chemical properties. Remote sensing can improve the spatial and 
temporal coverage of water quality measurements by linking in 
situ measurements with several types of remote sensing data. In 
an early example, Carpenter and Carpenter (1983) used statisti-
cal models to link Landsat Multispectral Scanner System (MSS) 
data to in situ turbidity and algal pigment data in several Austral-
ian lakes. Satellite data were then used with the model to predict 
the water quality parameters lake-wide over several time periods. 
Other models have been developed to estimate primary produc-
tivity (both surface and profile estimates) in Estonian lakes using 
Envisat Medium Resolution Imaging Spectrometer data (Kauer 
et al. 2015). 
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Figure 3. (A) Landsat 5 Thematic Mapper false-color images and (B) NDVI for dry (1992) and wet (2011) years showing interan-
nual differences in riparian vegetation productivity during mid-July in upper Salmon Falls Creek watershed, Nevada. (C) Landsat 
NDVI significantly increased (P < 0.001) from 1985 to 2011 in a riparian exclosure in the watershed. (D) Redband Trout Oncorhyn-
chus mykiss gairdneri have higher densities at stream sites with higher riparian NAIP NDVI values in Salmon Falls Creek where 
stream temperatures are suitable as shown by quantile regression.
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Productivity of aquatic systems has also been inferred from 
estimates of terrestrial primary productivity. In Norway, good 
predictions of lake productivity (as chlorophyll-a) were obtained 
from a model that included terrestrial Normalized Difference 
Vegetation Index (NDVI) data from the Polar-Orbiting Opera-
tional Environmental Satellites–AVHRR sensor as well as other 
factors; NDVI is an indicator of active photosynthesis and plant 
vigor computed from multispectral data (Pettorelli et al. 2005). 
Lake productivity was then shown to influence sea migration 
behavior in Arctic Char S. alpinus (Finstad and Hein 2012) and 
competitive dominance between Arctic Char and Brown Trout S. 
trutta (Finstad et al. 2011). Tanentzap et al. (2014) used Landsat-
derived NDVI as a measure of vegetation density to show how 
forest cover alteration influenced terrestrial organic inputs into a 
boreal lake, the productivity of aquatic food webs, and the growth 
of age-0 Yellow Perch Perca flavescens near lake–stream inter-
faces. Gross and net terrestrial primary productivity (GPP and 
NPP, respectively) are now being estimated directly from satellite 
data, and there have been studies linking MODIS-derived esti-
mates of terrestrial NPP to freshwater fish species richness across 
the globe at a resolution of 1° (Pelayo-Villamil et al. 2015).  

Satellite data have also been pivotal in investigating dynam-
ics of aquatic macrophytes. Massicotte et al. (2015) found that 
larval Yellow Perch recruitment in fluvial Lake Saint-Pierre along 
the U.S.–Canada border was associated with aquatic vegetation 
mapped using Landsat-derived Enhanced Vegetation Index data, 
which helped overcome logistical constraints with in situ vegeta-
tion sampling. Zhao et al. (2013) also used Landsat data to assess 
the spatial and temporal changes in aquatic vegetation, and thus 
fish habitat, due to human activities in Taihu Lake, China.

Water Use
With increasing pressure on water resources, there have been 

focused efforts to document ecological responses to hydrologic 
alteration (Poff and Zimmerman 2010). This requires two founda-
tional steps often dependent on remote sensing: mapping natural 
flow regimes and quantifying hydrologic alteration. Flow regime 
classifications are based on climate, topography, and soils meas-
ured from remote sensing products (Leasure et al. 2016). These 
same data have also been used in indices of hydrologic distur-
bance and more directly as predictors for model-based estimates 
of natural flow conditions (Carlisle et al. 2010). These models are 
often constructed using dozens of predictors representing various 
aspects of climate, land cover, soils, and hydrology derived from 
remote sensing and other data sources.

Human withdrawals of freshwater impact aquatic ecosystems 
and fisheries, but quantifying water withdrawal and streamflow 
alteration across large regions has been challenging (Carlisle et 
al. 2010). However, new evapotranspiration models using land 
surface temperature derived from thermal infrared Landsat data 
are being used to evaluate and improve irrigation efficiency, mon-
itor water rights, negotiate interstate water-sharing agreements, 
and determine water allocations, all of which have the potential 
to help prioritize water conservation and management to balance 
instream flow and fisheries needs with societal needs (Anderson 
et al. 2012). 

Disturbances and Disasters
Disturbances and disasters can strongly affect freshwater 

habitats and biota. Wildfire can influence watershed and riparian 
vegetation and result in debris flows that alter stream habitat and 
fishes (Rieman et al. 2010). Wildfire risk predictions based on re-
motely sensed topographic, vegetation, and canopy structure data 

have been used in decision support tools for Bull Trout that in-
form fire fuel and riverine connectivity management to facilitate 
population persistence (Falke et al. 2015). Remotely sensed wild-
fire data are available from several U.S. interagency programs: 
the Active Fire Mapping Program (fsapps.nwcg.gov/afm), the 
LANDFIRE program (landfire.gov), and the Monitoring Trends 
in Burn Severity Program (mtbs.gov).

Floods also influence freshwater ecosystems, and radar and 
multispectral data have been used to map flooding (reviewed by 
Klemas 2014). Alsdorf et al. (2000) used Space Shuttle SAR data 
to document daily water-level changes in the Amazon floodplain 
of 2 to 10 cm per day. In another application, Landsat, Satellite 
Pour l’Observation de la Terre (SPOT; Spot Image, Toulouse, 
France), and RapidEye (Planet Labs, San Francisco, California) 
data were used to measure connectivity of floodplain lakes to the 
Saskatchewan River, Canada. Lakes closer to the main channel 
had limnological characteristics similar to the river itself, where-
as less-connected lakes were more influenced by local climate 
and environmental characteristics (MacKinnon et al. 2015).

EMERGING TOOLS FOR FISHERIES APPLICATIONS
New Sensors and Platforms

Long-running Earth observation programs continue to be 
a priority and provide invaluable data continuity for study of 
changing environments. Landsat’s multidecadal data continuity 
is a key reason for its wide use (Turner et al. 2015). The joint 
NASA/USGS Landsat program launched Landsat 8 in 2013, and 
Landsat 9 is projected to launch in 2023. Continuity missions are 
also in place or planned by the lead agencies for MODIS (Suomi 
NPP and VIIRS; jointmission.gsfc.nasa.gov), Sentinel 2A and 2B 
(Sentinel 2C and 2D; sentinel.esa.int), and SPOT (PROBA-V; 
proba-v.vgt.vito.be/en). New R-series missions for the Geosta-
tionary Operational Environmental Satellite (GOES; goes-r.gov) 
program will provide higher resolution weather data to improve 
weather forecasting (a new GOES-R satellite was launched in 
November 2016). Even some airborne programs were designed 
for data continuity, such as NAIP imagery, which provides peri-
odic coverage (~3-year frequency) of the United States at a high 
spatial resolution (1 m).

Advanced sensor technology facilitates freshwater investiga-
tions that were not previously possible. Spaceborne hyperspectral 
sensors are becoming more common after the recent success of 
the Hyperion sensor (220 spectral bands, 30-m spatial resolution) 
aboard the NASA EO-1 satellite. Airborne hyperspectral sensors, 
for example, have been used to map instream habitats, depths, and 
large wood in streams (Marcus et al. 2003). Likewise, advance-
ments in LiDAR technology, including both spaceborne LiDAR 
and airborne green LiDAR, are increasing availability of high-
resolution topographic data, including state-of-the-art freshwater 
bathymetry data (McKean et al. 2008). In addition, Earth is now 
orbited by a fleet of commercial satellites with specialized sen-
sors that have targeted spectral bands, submeter resolution, and 
daily return times that should prove useful for unique applications 
(e.g., WorldView, GeoEye, QuickBird).  

Innovative new remote sensing platforms such as microsatel-
lites and unmanned aerial vehicles (UAVs) are also opening new 
possibilities. UAVs provide cost-efficient, high-spatial-resolution 
data with low-altitude flights at spatial extents not possible with 
field surveys. This was demonstrated by using UAVs to map nui-
sance green algae on the Clark Fork River, Montana (Flynn and 
Chapra 2014). UAVs have also been used in combination with 
SPOT satellite imagery to study postflood revegetation processes 
in French rivers (Hervouet et al. 2011). Small startup companies 
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Figure 4. Top panels (left to right): Aerial imagery, airborne LiDAR vegetation height (first laser return minus last laser return) 
and ground elevation (last laser return), and solar exposure on surface water showing spatial variation in vegetation height 
(reflecting vegetation type and structure), hillslope and floodplain topography, and stream shading for the Boise River, Boise, 
Idaho. Bottom panel: Transverse profile of vegetation and floodplain elevations from LiDAR data. LiDAR data resampled to 3-m 
spatial resolution.

are developing microsatellites with lower development times and 
costs when compared to traditional satellites. The smallest satel-
lites, nanosatellites, may be less than 10 kg with costs as low as 
US$1 million, compared to larger satellites that can be over 1,000 
kg and $500 million.

Future Data Products
Global and regional-scale change detection (e.g., land cover 

and climate) will continue to be a focal point for freshwater fish-
eries. For example, global changes in forest cover over several 
decades were measured at a 30-m spatial resolution using Land-
sat archives (Hansen et al. 2013), and future changes to land use 
and climate are expected to influence fisheries in different ways 
(Radinger et al. 2016). As programs like Landsat continue to ac-
cumulate longer time series, more change detection products will 
become available. Recent versions of the NLCD now even in-
clude summaries of land cover change over time. In parallel, new 
water temperature and hydrology models are being developed 
with remotely sensed measures of vegetation, topography, and 
climate. As mentioned earlier, the NorWeST project is developing 
spatial predictions of stream temperatures every 1 km across large 
portions of the United States (Isaak et al. 2015). USGS Geospatial 
Attributes of Gages for Evaluating Streamflow (GAGES II) was 
an effort to develop models of streamflow at that same scale but 
using data from streamflow gages and not remote sensing plat-
forms (Carlisle et al. 2010). 

Stream networks are now represented in geospatial hydrogra-
phy databases with unique identifiers for stream segments (con-

fluence-to-confluence reaches) and hydrologic units. These data-
bases provide standardized frameworks for archiving stream- and 
lake-related information that is often derived from remote sensing 
data. The National Hydrography Dataset Plus (NHD+; horizon-
systems.com/nhdplus) and the National Watershed Boundary 
data set (nhd.usgs.gov/wbd.html) data sets are used in this way. 
For example, the StreamCat data set contains information on land 
cover, runoff, soils, and other watershed attributes for specific 
stream segments in the NHD+ data set (Hill et al. 2016). These 
databases are often the foundation for large-scale aquatic assess-
ments and planning frameworks (Williams et al. 2007; Esselman 
et al. 2011).

Data Access and Acquisition
Though remote sensing data archives are now more acces-

sible through platforms like USGS Global Visualization Viewer 
(GloVis), USGS Earth Explorer, and the European Space Agen-
cy’s Copernicus Open Access Hub, contemporary imagery and 
derived products are often now available in near real time. Terra/
Aqua MODIS, Landsat Operational Land Imager, and Sentinel 
data are available within 24 h of acquisition. The Active Wildfire 
Mapping Program uses MODIS data for near-real-time wildfire 
mapping. Other innovative applications include continually up-
dated species distribution maps like Yale University’s Map of 
Life (mol.org) and population models like Stony Brook Univer-
sity’s Mapping Application for Penguin Populations and Project-
ed Dynamics (MAPPPD) project (penguinmap.com) that use the 
most recent and near-real-time remote sensing data. 
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Cloud-based storage and automated processing of remote 
sensing data overcome key historical limitations: data storage, 
computing power, and software licensing. This drastically in-
creases access to data at spatial and temporal scales relevant to 
fisheries. Free, cloud-based platforms such as NASA Earth Ex-
change and Google Earth Engine allow individuals to access, ma-
nipulate, and analyze petabytes of imagery with only a desktop 
computer and an Internet connection. These platforms are behind 
big data applications like Deltares Aqua Monitor that offer near-
real-time monitoring of surface water gains and losses globally 
with 30-m spatial resolution (Donchyts et al. 2016).  

DISCUSSION
Despite new developments, several challenges remain. Many 

commercial satellites and almost all airborne platforms can still 
be cost-prohibitive for landscape-scale applications (Turner et al. 
2015). Manipulation of raw data requires some remote sensing 
expertise, and there will still be a lag in development of some 
derived products useful for freshwater applications. Freshwa-
ters in general are optically complex, and sensors designed for 
oceanographic purposes yield data that are spatially and spectral-
ly too coarse for use in inland waters because aquatic vegetation 
communities need to be differentiated at higher spatial resolu-
tions than the broad spatial gradients typical of off-shore algal 
communities. Use of multi- and hyperspectral imagery in riverine 
habitats can be complicated by bottom reflectivity, water column 
optical properties (e.g., turbidity), and surface turbulence (Mar-
cus et al. 2003). Similar factors influence bathymetry and benthic 
substrate measurement accuracy in lakes (Dörnhöfer and Oppelt 
2016). 

Other challenges include the need for in situ data across broad 
scales for validating remote sensing products (Schaeffer et al. 
2013). The void in in situ data highlights the need for closer coor-
dination between the fisheries and aquatic resources communities 
and remote sensing community. Progress is being made, however, 
as exemplified by the Wabash River in Indiana where a spectral 
and biogeochemical database is being developed to facilitate re-
mote sensing of water quality in large rivers (Tan et al. 2016). 
Here, spectral measurements are taken at the same time as in situ 
measurements of primary production, organic matter, and nutri-
ents so that models can be developed to understand how water 
quality changes with hydrology and other factors using remote 
sensing data.

Most freshwater fisheries studies using remotely sensed data 
have emphasized spatial rather than temporal variability in the 
environment. This is because derived data products and summa-
ries are only updated once or twice a decade, even though the un-
derlying remote sensing data are collected much more frequently. 
However, increased availability and accessibility of imagery 
archives has expanded our understanding of how temporal vari-
ability in terrestrial and aquatic landscapes influences freshwater 
ecosystems (Figure 3; Tonolla et al. 2012). The rapid availability 
of remote sensing data could also drive near-real-time applica-
tions of remote sensing for regulatory compliance (e.g., tempera-
ture exceedance, illegal fishing), threat response (e.g., wildfire), 
and recreational fisheries management (e.g., biologically based 
seasons).

Remote sensing clearly has advanced the knowledge of fresh-
water fisheries across broad landscapes, and we highlighted these 
advances to make its application more accessible to fisheries bi-
ologists and managers (Text Box; Table 1). More platforms and 
better sensors will continue to improve the spatial, temporal, and 
spectral resolution of remote sensing data and products derived 

A ROADMAP: PRACTICAL GUIDANCE 
FOR USE OF REMOTE SENSING DATA

With rapid advancements in remote sensing, the sheer 
volume of information, raw data, and derived products can 
be overwhelming. NASA’s Applied Remote Sensing Train-
ing Program (arset.gsfc.nasa.gov) offers online or in-person 
training and covers a variety of topics that include introduc-
tory material, and most data delivery platforms (e.g., Google 
Earth Engine) have some sort of training tutorial. Here are a 
few simple steps to get started:

Step 1: Identify Question: Identify a research or man-
agement question that can be addressed with available re-
motely sensed data and limited project resources. Know the 
available data options when developing your question, and 
know how others have used remote sensing data for similar 
questions. Tables 1 and S1 are good starting points.

Step 2: Data Acquisition: Review available data sets 
suitable for your question, paying particular attention to 
spatial resolution, spectral characteristics, temporal avail-
ability, postprocessing requirements, and costs. You must 
balance trade-offs between these factors when selecting a 
data product. For example, four-band NAIP data (1-m reso-
lution) requires approximately 500 times as much storage 
as seven-band Landsat data (30-m resolution) along with a 
commensurate increase in processing time. Many data sets 
are available for free, so start with those if possible. Data are 
easily accessible from Google Earth Engine, NASA Earth 
Exchange, and USGS Global Visualization Viewer GloVis 
and Earth Resources Observation and Science.  

Step 3: Data Processing and Storage: Some data sets 
require significant postprocessing. For example, satellite 
images often require cloud removal and atmospheric cor-
rection to calculate a reliable vegetation index. A digital 
elevation model must go through several processing steps 
to delineate streams or watersheds if existing hydrography 
frameworks are insufficient. This requires time, expertise, 
software, computing power, and data storage. These steps 
are often worthwhile, and sometimes necessary, to get a 
quality data set. However, services may be available to auto-
mate processing (Google Earth Engine, USGS StreamStats, 
Geodata Crawler), and there are often free data products 
that meet your needs (NHD+, NorWeST, NLCD, BioClim, 
LANDFIRE, GAGES II, and StreamStats). 

Step 4: From Data to Information: Once you have ac-
quired and processed a remotely sensed data set, you still 
need to extract and summarize the data for your question. 
Some fisheries research questions require different spatial 
scales of measurement. For example, assume that you have a 
raster of NDVI values for your study area, but your research 
question relates fish abundance to riparian vegetation up-
stream of your sample sites. For every site where you meas-
ured fish abundance, you need to delineate the upstream ri-
parian zone and summarize NDVI values within those areas 
(e.g., mean, minimum, SD). Services are now becoming 
available to automate these steps (USGS StreamStats, Geo-
data Crawler). There are also efforts to map stream networks 
and archive fisheries-relevant information about particular 
stream segments and hydrologic units (NHD+, USGS GAG-
ES II). Thus, existing geospatial data sets may already con-
tain the data summary you need. 
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from them. In short, these advances will continue to help answer 
new questions at finer spatial and temporal resolutions across 
larger landscapes, continue to provide the big picture to fisheries 
management and ecology, and be a tool used more frequently by 
fisheries biologists and the broader natural resources community. 

ACKNOWLEDGMENTS
We thank H. Neville, J. Dunham, C. Torgersen, D. Whitacre, 

two anonymous reviewers, and the editors for constructive re-
views of earlier manuscript versions.

FUNDING
This project was funded by National Aeronautics and Space 

Administration (NASA) grant #NNX14AC91G, U.S. Bureau of 
Land Management, and Trout Unlimited’s Coldwater Conserva-
tion Fund. 

SUPPLEMENTARY FILES
Available: www.tu.org/rem-sens-fish

Table S1: Examples of commonly used commercial and gov-
ernmental (civilian) spaceborne satellites and sensors used in 
natural resources applications of remote sensing.

REFERENCES
Adam, E., O. Mutanga, and D. Rugege. 2010. Multispectral and hyper-

spectral remote sensing for identification and mapping of wetland 
vegetation: a review. Wetlands Ecology and Management 18:281–
296.

Alsdorf, D. E., J. M. Melack, T. Dunne, L. A. K. Mertes, L. L. Hess, and L. 
C. Smith. 2000. Interferometric radar measurements of water level 
changes on the Amazon flood plain. Nature 404:174–177.

Anderson, M. C., R. G. Allen, A. Morse, and W. P. Kustas. 2012. Use of 
Landsat thermal imagery in monitoring evapotranspiration and 
managing water resources. Remote Sensing of Environment 122:50–
65.

Beck, M. W., B. Vondracek, L. K. Hatch, and J. Vinje. 2013. Semi-automat-
ed analysis of high-resolution aerial images to quantify docks in 
glacial lakes. ISPRS Journal of Photogrammetry and Remote Sensing 
81:60–69.

Brown, R. S., C. R. Duguay, R. P. Mueller, L. L. Moulton, P. J. Doucette, and 
J. D. Tagestad. 2010. Use of synthetic aperture radar (SAR) to identify 
and characterize overwintering areas of fish in ice-covered Arctic riv-
ers: a demonstration with Broad Whitefish and their habitats in the 
Sagavanirktok River, Alaska. Transactions of the American Fisheries 
Society 139:1711–1722.

Budy, P., M. Baker, and S. K. Dahle. 2011. Predicting fish growth potential 
and identifying water quality constraints: a spatially-explicit bioener-
getics approach. Environmental Management 48:691–709.

Carlisle, D. M., J. Falcone, D. M. Wolock, M. R. Meador, and R. H. Nor-
ris. 2010. Predicting the natural flow regime: models for assessing 
hydrological alteration in streams. River Research and Applications 
26:118–136.

Carpenter, D. J., and S. M. Carpenter. 1983. Modeling inland water qual-
ity using Landsat data. Remote Sensing of Environment 13:345–352.

Dauwalter, D. C., K. A. Fesenmyer, and R. Bjork. 2015. Using aerial imagery 
to characterize Redband Trout habitat in a remote desert landscape. 
Transactions of the American Fisheries Society 144:1322–1339.

Donchyts, G., F. Baart, H. Winsemius, N. Gorelick, J. Kwadijk, and N. van 
de Giesen. 2016. Earth’s surface water change over the past 30 
years. Nature Climate Change 6:810–813.

Dörnhöfer, K., and N. Oppelt. 2016. Remote sensing for lake research 
and monitoring—recent advances. Ecological Indicators 64:105–122.

Dugdale, S. J. 2016. A practitioner’s guide to thermal infrared remote 
sensing of rivers and streams: recent advances, precautions and 
considerations. Wiley Interdisciplinary Reviews: Water 3:251–268.

Duguay, C. R., M. Bernier, Y. Gauthier, and A. Kouraev. 2015. Remote 
sensing of lake and river ice. Pages 273–306 in M. Tedesco, editor. 
Remote sensing of the cryosphere. John Wiley and Sons, Oxford, 
United Kingdom.

Esselman, P. C., D. M. Infante, L. Wang, D. Wu, A. R. Cooper, and W. W. 
Taylor. 2011. An index of cumulative disturbance to river fish habi-
tats of the conterminous United States from landscape anthropo-
genic activities. Ecological Restoration 29:133–151.

Falke, J. A., J. B. Dunham, C. E. Jordan, K. M. McNyset, and G. H. Reeves. 
2013. Spatial ecological processes and local factors predict the dis-
tribution and abundance of spawning by steelhead (Oncorhynchus 
mykiss) across a complex riverscape. PLoS ONE 8(11):e79232.

Falke, J. A., R. L. Flitcroft, J. B. Dunham, K. M. McNyset, P. F. Hessburg, and 
G. H. Reeves. 2015. Climate change and vulnerability of Bull Trout 
(Salvelinus confluentus) in a fire-prone landscape. Canadian Journal 
of Fisheries and Aquatic Sciences 72:304–318.

Finstad, A. G., T. Forseth, B. Jonsson, E. Bellier, T. Hesthagen, A. J. Jensen, 
D. O. Hessen, and A. Foldvik. 2011. Competitive exclusion along cli-
mate gradients: energy efficiency influences the distribution of two 
salmonid fishes. Global Change Biology 17:1703–1711.

Finstad, A. G., and C. L. Hein. 2012. Migrate or stay: terrestrial prima-
ry productivity and climate drive anadromy in Arctic Char. Global 
Change Biology 18:2487–2497.

Flynn, K. F., and S. C. Chapra. 2014. Remote sensing of submerged aquat-
ic vegetation in a shallow non-turbid river using an unmanned aerial 
vehicle. Remote Sensing 6:12815–12836.

Goetz, S. J. 2006. Remote sensing of riparian buffers: past progress and 
future prospects. Journal of the American Water Resources Associa-
tion 42:133–143.

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. 
Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kom-
mareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 
2013. High-resolution global maps of 21st-century forest cover 
change. Science 342:850–853.

Hervouet, A., R. Dunford, H. Piégay, B. Belletti, and M.-L. Trémélo. 2011. 
Analysis of post-flood recruitment patterns in braided-channel rivers 
at multiple scales based on an image series collected by unmanned 
aerial vehicles, ultra-light aerial vehicles, and satellites. GIScience 
and Remote Sensing 48:50–73.

Hestir, E. L., V. E. Brando, M. Bresciani, C. Giardino, E. Matta, P. Villa, and 
A. G. Dekker. 2015. Measuring freshwater aquatic ecosystems: the 
need for a hyperspectral global mapping satellite mission. Remote 
Sensing of Environment 167:181–195.

Hestir, E. L., S. Khanna, M. E. Andrew, M. J. Santos, J. H. Viers, J. A. Green-
berg, S. S. Rajapakse, and S. L. Ustin. 2008. Identification of invasive 
vegetation using hyperspectral remote sensing in the California 
Delta ecosystem. Remote Sensing of Environment 112:4034–4047.

Hill, R. A., M. H. Weber, S. G. Leibowitz, A. R. Olsen, and D. J. Thornbrugh. 
2016. The Stream-Catchment (StreamCat) dataset: a database of wa-
tershed metrics for the conterminous United States. Journal of the 
American Water Resources Association 52:120–128.

Hughes, R. M., L. Wang, and P. W. Seelbach. 2006. Landscape influences 
on stream habitats and biological assemblages. American Fisheries 
Society, Symposium 48, Bethesda, Maryland.

Hugue, F., M. Lapointe, B. C. Eaton, and A. Lepoutre. 2016. Satellite-based 
remote sensing of running water habitats at large riverscape scales: 
tools to analyze habitat heterogeneity for river ecosystem manage-
ment. Geomorphology 253:353–369.

Huntington, J. L., K. C. Hegewisch, B. Daudert, C. G. Morton, J. T. Abat-
zoglou, D. J. McEvoy, and T. Erickson. 2017. Climate Engine: cloud 
computing and visualization of climate and remote sensing data for 
advanced natural resource monitoring and process understanding. 
Bulletin of the American Meteorological Society.

Isaak, D. J., C. H. Luce, B. E. Rieman, D. E. Nagel, E. E. Peterson, D. L. Ho-
ran, S. Parkes, and G. L. Chandler. 2010. Effects of climate change 
and wildfire on stream temperatures and salmonid thermal habitat 
in a mountain river network. Ecological Applications 20:1350–1371.

Isaak, D. J., S. J. Wenger, E. E. Peterson, J. M. Ver Hoef, S. W. Hostetler, C. 
H. Luce, J. B. Dunham, J. L. Kershner, B. B. Roper, D. E. Nagel, G. L. 
Chandler, S. P. Wollrab, S. L. Parkes, and D. L. Horan. 2016. NorWeST 
modeled summer stream temperature scenarios for the western 
U.S. Forest Service Research Data Archive, Fort Collins, Colorado.

Isaak, D. J., M. K. Young, D. E. Nagel, D. L. Horan, and M. C. Groce. 2015. 
The cold-water climate shield: delineating refugia for preserving 
salmonid fishes through the 21st century. Global Change Biology 
21:2540–2553.

D
ow

nl
oa

de
d 

by
 [

17
4.

22
4.

35
.2

1]
 a

t 1
5:

35
 2

4 
O

ct
ob

er
 2

01
7 



Fisheries | www.fisheries.org   537

Johansen, K., N. C. Coops, S. E. Gergel, and Y. Stange. 2007. Application of 
high spatial resolution satellite imagery for riparian and forest eco-
system classification. Remote Sensing of Environment 110:29–44.

Johnson, L. B., and S. H. Gage. 1997. Landscape approaches to the analy-
sis of aquatic ecosystems. Freshwater Biology 37:113–132.

Kasprak, A., F. J. Magilligan, K. H. Nislow, and N. P. Snyder. 2012. A lidar-
derived evaluation of watershed-scale large woody debris source 
and recruitment mechanisms: coastal Maine, USA. River Research 
and Applications 28:1462–1476.

Kauer, T., T. Kutser, H. Arst, T. Danckaert, and T. Nõges. 2015. Modelling 
primary production in shallow well mixed lakes based on MERIS sat-
ellite data. Remote Sensing of Environment 163:253–261.

Klemas, V. 2014. Remote sensing of floods and flood-prone areas: an 
overview. Journal of Coastal Research 31:1005–1013.

Leasure, D. R., D. D. Magoulick, and S. D. Longing. 2016. Natural flow 
regimes of the Ozark–Ouachita interior highlands region. River Re-
search and Applications 32:18–35.

Leglieter, C. J., D. A. Roberts, W. A. Marcus, and M. A. Fonstad. 2004. 
Passive optical remote sensing of river channel morphology and 
in-stream habitat: physical basis and feasibility. Remote Sensing of 
Environment 93:493–510.

Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges. 1994. A simple 
hydrologically based model of land surface water and energy fluxes 
for general circulation models. Journal of Geophysical Research: At-
mospheres 99:14415–14428.

Macfarlane, W. W., C. M. McGinty, B. G. Laub, and S. J. Gifford. 2017. 
High-resolution riparian vegetation mapping to prioritize conserva-
tion and restoration in an impaired desert river. Restoration Ecology 
25:333–341.

MacKinnon, B. D., J. Sagin, H. M. Baulch, K.-E. Lindenschmidt, and T. 
D. Jardine. 2015. Influence of hydrological connectivity on win-
ter limnology in floodplain lakes of the Saskatchewan River Delta, 
Saskatchewan. Canadian Journal of Fisheries and Aquatic Sciences 
73:140–152.

Marcus, W. A., C. J. Leglieter, R. J. Aspinall, J. W. Boardman, and R. L. 
Crabtree. 2003. High spatial resolution hyperspectral mapping of 
in-stream habitats, depths, and woody debris in mountain streams. 
Geomorphology 55:363–380.

Massicotte, P., A. Bertolo, P. Brodeur, C. Hudon, M. Mingelbier, and P. 
Magnan. 2015. Influence of the aquatic vegetation landscape on 
larval fish abundance. Journal of Great Lakes Research 41:873–880.

McKean, J. A., D. J. Isaak, and C. W. Wright. 2008. Geomorphic controls on 
salmon nesting patterns described by a new, narrow-beam terres-
trial–aquatic lidar. Frontiers in Ecology and Environment 6:125–130.

Palmer, S. C. J., T. Kutser, and P. D. Hunter. 2015. Remote sensing of 
inland waters: challenges, progress and future directions. Remote 
Sensing of Environment 157:1–8.

Pekel, J.-F., A. Cottam, N. Gorelick, and A. S. Belward. 2016. High-reso-
lution mapping of global surface water and its long-term changes. 
Nature 540:418–422.

Pelayo-Villamil, P., C. Guisande, R. P. Vari, A. Manjarres-Hernandez, E. 
Garcia-Rosello, J. Gonzalez-Dacosta, J. Heine, L. Gonzalez Vilas, B. 
Patti, E. M. Quinci, L. Fernanda-Jimenez, C. Granado-Larencio, P. A. 
Tedesco, and J. M. Lobo. 2015. Global diversity patterns of freshwa-
ter fishes—potential victims of their own success. Diversity and Dis-
tributions 21:345–356.

Pettorelli, N., J. Olav Vik, A. Mysterud, J.-M. Gaillard, C. J. Tucker, and N. C. 
Stenseth. 2005. Using the satellite-derived NDVI to assess ecological 
responses to environmental change. Trends in Ecology and Evolu-
tion 20:503–510.

Poff, N. L., and J. K. H. Zimmerman. 2010. Ecological responses to altered 
flow regimes: a literature review to inform the science and manage-
ment of environmental flows. Freshwater Biology 55:194–205.

Radinger, J., F. Hölker, P. Horký, O. Slavík, N. Dendoncker, and C. Wolter. 
2016. Synergistic and antagonistic interactions of future land use 
and climate change on river fish assemblages. Global Change Biol-
ogy 22:1505–1522.

Rieman, B. E., P. F. Hessburg, C. Luce, and M. R. Dare. 2010. Wildfire and 
management of forests and native fishes: conflict or opportunity for 
convergent solutions? BioScience 60:460–468.

Rose, R. A., D. Byler, J. R. Eastman, E. Fleishman, G. Geller, S. Goetz, L. Guild, 
H. Hamilton, M. Hansen, R. Headley, J. Hewson, N. Horning, B. A. Ka-
plin, N. Laporte, A. Leidner, P. Leimgruber, J. Morisette, J. Musinsky, 
L. Pintea, A. Prados, V. C. Radeloff, M. Rowen, S. Saatchi, S. Schill, K. 
Tabor, W. Turner, A. Vodacek, J. Vogelmann, M. Wegmann, D. Wilkie, 
and C. Wilson. 2014. Ten ways remote sensing can contribute to con-
servation. Conservation Biology 29:350–359.

Sando, R., and K. W. Blasch. 2015. Predicting alpine headwater stream 
intermittency: a case study in the northern Rocky Mountains. Ecohy-
drology and Hydrobiology 15:68–80.

Schaeffer, B. A., K. G. Schaeffer, D. Keith, R. S. Lunetta, R. Conmy, and 
R. W. Gould. 2013. Barriers to adopting satellite remote sensing for 
water quality management. International Journal of Remote Sensing 
34:7534–7544.

Schneider, P., and S. J. Hook. 2010. Space observations of inland water 
bodies show rapid surface warming since 1985. Geophysical Research 
Letters 37:L22405.

Tan, J., K. Cherkauer, and I. Chaubey. 2016. Developing a comprehensive 
spectral–biogeochemical database of midwestern rivers for water 
quality retrieval using remote sensing data: a case study of the Wa-
bash River and its tributary, Indiana. Remote Sensing 8:517.

Tanentzap, A. J., E. J. Szkokan-Emilson, B. W. Kielstra, M. T. Arts, N. D. Yan, 
and J. M. Gunn. 2014. Forests fuel fish growth in freshwater deltas. 
Nature Communications 5:4077.

Tonolla, D., C. Wolter, T. Ruhtz, and K. Tockner. 2012. Linking fish assem-
blages and spatiotemporal thermal heterogeneity in a river–flood-
plain landscape using high-resolution airborne thermal infrared 
remote sensing and in-situ measurements. Remote Sensing of Envi-
ronment 125:134–146.

Turner, W., C. Rondinini, N. Pettorelli, B. Mora, A. K. Leidner, Z. Szantoi, 
G. Buchanan, S. Dech, J. Dwyer, M. Herold, L. P. Koh, P. Leimgruber, 
H. Taubenboeck, M. Wegmann, M. Wikelski, and C. Woodcock. 2015. 
Free and open-access satellite data are key to biodiversity conserva-
tion. Biological Conservation 182:173–176.

Van Dijk, A. I. J. M., G. R. Brakenridge, A. J. Kettner, H. E. Beck, T. De Groeve, 
and J. Schellekens. 2016. River gauging at global scale using optical 
and passive microwave remote sensing. Water Resources Research 
52:6404–6418.

Vatland, S. J., R. E. Gresswell, and G. C. Poole. 2015. Quantifying stream 
thermal regimes at multiple scales: combining thermal infrared im-
agery and stationary stream temperature data in a novel modeling 
framework. Water Resources Research 51:31–46.

Verpoorter, C., T. Kutser, D. A. Seekell, and L. J. Tranvik. 2014. A global in-
ventory of lakes based on high-resolution satellite imagery. Geophysi-
cal Research Letters 41:6396–6402.

Vierling, K. T., L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges. 
2008. Lidar: shedding new light on habitat characterization and mod-
eling. Frontiers in Ecology and Environment 6:90–98.

Wenger, S. J., D. J. Isaak, C. H. Luce, H. M. Neville, K. D. Fausch, J. B. Dunham, 
D. C. Dauwalter, M. K. Young, M. M. Elsner, B. E. Rieman, A. F. Hamlet, 
and J. E. Williams. 2011. Flow regime, temperature, and biotic interac-
tions drive differential declines of trout species under climate change. 
Proceedings of the National Academy of Sciences 108:14175–14180.

Williams, J. E., A. L. Haak, N. G. Gillespie, and W. T. Colyer. 2007. The Con-
servation Success Index: synthesizing and communicating salmonid 
condition and management needs. Fisheries 32:477–492.

Wirth, L., A. E. Rosenberger, A. Prakash, R. Gens, F. J. Margraf, and T. 
Hamazaki. 2012. A remote-sensing, GIS-based approach to identify, 
characterize, and model spawning habitat for fall-run Chum Salmon 
in a sub-arctic, glacially fed river. Transactions of the American Fisher-
ies Society 141:1349–1363.

Zhao, D., M. Lv, H. Jiang, Y. Cai, D. Xu, and S. An. 2013. Spatio-temporal 
variability of aquatic vegetation in Taihu Lake over the past 30 years. 
PLoS ONE 8:e66365.

D
ow

nl
oa

de
d 

by
 [

17
4.

22
4.

35
.2

1]
 a

t 1
5:

35
 2

4 
O

ct
ob

er
 2

01
7 




