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ARTICLE

Using Aerial Imagery to Characterize Redband Trout Habitat
in a Remote Desert Landscape

Daniel C. Dauwalter,* Kurt A. Fesenmyer, and Robin Bjork
Trout Unlimited, 910 Main Street, Suite 342, Boise, Idaho 83702, USA

Abstract
Remote sensing products, including aerial imagery, can be used to quantify characteristics of watersheds

and stream corridors that often predict the distribution and abundance of aquatic species. We conducted a
supervised, object-oriented classification of imagery from the National Agricultural Imagery Program to
develop a high-resolution (1-m) land cover data set with four cover classes, emphasizing accurate
characterization of woody riparian vegetation along stream corridors in northern Nevada and southwestern
Idaho. The overall classification accuracy was 76%, and producer’s accuracy (reflecting false positives) and
user’s accuracy (reflecting false negatives) for the woody vegetation class were 84% and 70%, respectively.
Using logistic and quantile regression models in a model-selection framework, we found woody vegetation to
be positively associated with the occurrence and density of Redband Trout Oncorhynchus mykiss gairdneri. In
addition, occurrence probabilities and densities were highest at mean August stream temperatures (predicted
from a stream temperature model) ranging from 13�C to 17�C. When considered together with stream
temperature, percent woody vegetation typically predicted Redband Trout occurrence and density better than
most field-measured instream and riparian habitat variables in northern Nevada. Our study highlights how
free high-resolution imagery can be used to characterize woody riparian vegetation and Redband Trout
habitat across a large and remote desert landscape that can be difficult to access for field surveys. It also
suggests that imagery from the National Agricultural Imagery Program may have wider application in
identifying stream habitat restoration opportunities, where land and water uses have negatively impacted
woody riparian vegetation in desert regions of the interior western United States.

Landscape features, such as watershed land use and valley

confinement, influence stream habitat and the distribution and

abundance of aquatic organisms, and these features can often

be described using remote sensing products (e.g., satellite

imagery, thermal imagery, and aerial photography) (Rose

et al. 2014; Vatland et al. 2015). For example, the National

Land Cover Dataset (Wickham et al. 2013) is derived from

Landsat Thematic Mapper satellite imagery and has been

widely used to predict fish occurrence and abundance in

streams (Hughes et al. 2006; Dauwalter et al. 2011). While

useful for characterizing the large features of the landscape,

satellite imagery was not designed to characterize small,

fine-grained landscape features at high resolutions (10 m or

less). In contrast, aerial imagery is one type of remote sensing

that is often high resolution (1 m or less), and it is increasingly

being used to study fisheries and aquatic ecosystems (Wirth

et al. 2012). For example, Booth et al. (2007) found that ripar-

ian condition assessments using high-resolution aerial imagery

(2-cm resolution) were comparable to ground-based assess-

ments but that the use of aerial imagery was faster and allowed

for greater sampling intensity and broader spatial coverage.

Aerial imagery has been used to quantify changes in river

channel morphology and guide stream restoration (Carpenter

et al. 2012; Leglieter 2013; Tamminga et al. 2015), quantify
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abundance of aquatic vegetation in lakes (Valta-Hulkkonen

et al. 2005), and assess habitat suitability for wetland species

(Shealer and Alexander 2013).

One example of widely used aerial imagery is that pro-

duced by the National Agriculture Imagery Program (NAIP)

administered by the U.S. Department of Agriculture’s Farm

Service Agency. The NAIP acquires aerial imagery during

the agricultural growing season (i.e., “leaf-on”) in the conti-

nental USA and makes it freely available to the public within

1 year of acquisition. The imagery is typically 1-m resolution

and acquired as a three- or four-band product, with red,

green, and blue bands and an optional near-infrared band that

allows it to be used as natural color or color infrared images.

The horizontal accuracy of NAIP imagery from 2006 and

later is required to be within 6 m of true ground at a 95%

confidence level. Because of its free availability and high

resolution, NAIP imagery is served with many commercial

products, such as in Google Earth (www.google.com/earth/).

These characteristics make NAIP imagery ideal for charac-

terizing small-scale features of streams, and, in fact, it has

been used to delineate and characterize riparian areas (Booth

et al. 2012). However, the NAIP has not been widely used in

fisheries, which is surprising given its availability and the

influence that small-scale stream features, such as riparian

vegetation, have on habitats used by stream fishes (Cross

et al. 2013; Dauwalter et al. 2014).

The Columbia River Redband Trout Oncorhynchus mykiss

gairdneri is native to the Columbia and Frazer River basins

east of the Cascade Range, where it occupies a variety of

habitats ranging from mountain lakes to desert streams

(Benke 2002; Muhlfeld et al. 2015). In desert environments,

resident Redband Trout occupy small- to medium-sized

streams with mean summer (June through August) tempera-

tures less than 20�C (Meyer et al. 2010) and they mature in

the first or second year of life (Schill et al. 2010; Meyer et al.

2014). The extent of habitat occupied expands and contracts

in conjunction with stream drying due to the annual changes

in precipitation and streamflow (Zoellick 1999). Redband

Trout are often found in streams shaded by riparian vegeta-

tion. Zoellick and Cade (2006) found stream shading to pre-

dict Redband Trout density slightly better than a composite

instream habitat suitability index. They also found the effect

of shading on density to be conditional on the distance from

stream headwaters—a surrogate for stream temperature—

and hypothesized that stream shading from woody riparian

vegetation limited, but was not the sole determinant of, Red-

band Trout densities. While riparian vegetation composition

reflects natural gradients in hydrology, nutrients, and other

natural factors (Wondzell et al. 2007), it also reflects the

intensity of livestock grazing. Grazing has been shown to

negatively impact woody riparian vegetation in desert Red-

band Trout streams, which can result in streambank instabil-

ity, higher concentrations of fine sediments, and greater

insolation and warmer stream temperatures (Li et al. 1994;

Zoellick 2004).

Our goal was to evaluate the use of a supervised, object-ori-

ented classification of NAIP imagery to accurately character-

ize woody riparian vegetation as a tool for characterizing

Redband Trout habitat and predicting the distribution (occur-

rence) and density of the species in high-desert basins in north-

ern Nevada and southwestern Idaho. Our specific objectives

were to (1) develop a high-resolution land cover map from

NAIP imagery, with a focus on accurate classification of

woody vegetation near streams, (2) evaluate the ability of

woody riparian vegetation to predict the distribution (occur-

rence) and density of Redband Trout, in addition to stream

temperature, which is well known to influence the species’

distribution, and (3) compare the predictive ability of woody

vegetation and stream temperature—both spatially explicit

data sets available for mapping and spatial analysis—to field-

measured instream and riparian habitat variables at a subset of

our study sites. Our study demonstrates how free high-resolu-

tion aerial imagery can be helpful in understanding Redband

Trout habitat conditions, distribution, and abundance in

streams across a high-desert region that is remote and often

difficult to access for field surveys.

METHODS

Study Area

Our study area encompassed the upper Salmon Falls Creek

and Owyhee River basins in northern Nevada and southwest-

ern Idaho (Figure 1). Both high-desert basins include popula-

tions of Redband Trout (Muhlfeld et al. 2015) and have varied

topography (elevation range D 665–3,100 m), including deep

canyons that are often remote and difficult to access. Climate

is characterized by warm summers (mean daily summer tem-

perature range D 10–25�C) and cool winters (mean daily win-

ter temperature range: ¡20�C to C5�C). Precipitation falls

primarily as snow in winter and totals 17–115 cm annually,

supporting sagebrush steppe (big sagebrush Artemisia triden-

tata and grasses in the family Poaceae) and juniper Juniperus

spp. woodland vegetation communities at low elevations and

conifer (family Pinaceae) and aspen Populus spp. at high ele-

vations. The primary anthropogenic land use in the region is

cattle grazing, with surface-irrigated hay pasture as a second-

ary use.

Supervised NAIP Image Classification

We acquired 1-m-resolution, four-band NAIP imagery to

develop a 1-m-resolution land cover data set for our two study

basins. Because NAIP data are collected on a state-by-state

basis periodically over time, the data we acquired were the

most recent at the time of classification and were within a few
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years of fish survey data (see below): 2010 for Salmon Falls

Creek in Nevada, 2006 for the Owyhee River basin in Nevada,

and primarily 2009 for the Owyhee River basin in Idaho. We

classified the NAIP imagery using a supervised, object-ori-

ented classification into four land cover classes: bare ground,

herbaceous riparian vegetation, upland vegetation, and woody

vegetation (Table 1). Although our primary focus was on the

accurate characterization of woody vegetation along stream

corridors, the use of four cover classes helped to distinguish

the statistical signature of woody vegetation relative to other

classes and improved classification accuracy. Supervised,

object-oriented image classification develops unique statistical

signatures of each object class based on the size, shape, orien-

tation, texture, and context of pixel values in a neighborhood

from multiple image bands that allows differentiation into cat-

egorical groupings (Lillesand and Kiefer 2000; Blaschke

2010). The supervised classification was conducted separately

for each NAIP image tile (3.75 £ 3.75 min quarter quadrangle

buffered by 300 m); 90 tiles were classified for Salmon Falls

Creek, and 235 were classified for the Owyhee River. To train

the classification of each tile, one person, hereafter referred to

as “user,” digitized five or more polygons (mean size D 0.5

ha; SD D 2.0 ha) around areas that represented each of the

four land cover types; all training data were constrained to be

in or near floodplain areas (identified using threshold values

when multiplying distance from stream by terrain slope).

Training data were used to develop the statistical signature for

each land cover class that was then used to classify each image

tile using Manhattan input representation (diamond-shaped

neighborhood) with a neighborhood size of nine cells. The

classification output was aggregated (i.e., smoothed) to a mini-

mum feature size of four pixels (i.e., 4 m2). The supervised

classification was implemented using the Feature Analyst

extension (Textron Systems, Providence, Rhode Island) within

ArcGIS version 10.0 software (ESRI, Redlands, California).

Final classifications for each image tile were mosaicked into

one land cover raster data set. While the minimum feature size

identified in the classification was 4 m2, we retained the native

resolution of the NAIP imagery in the final land cover data set

(1 m2). Images could not be mosaicked and classified all at

once due to computational limits and time-of-day and seasonal

differences in NAIP flights that resulted in unique differences

FIGURE 1. National Agricultural Imagery Program (NAIP) classification footprint (gray area) and fish sampling locations (black and white circles) in the

Salmon Falls Creek and Owyhee River basins in Nevada and Idaho. Only larger streams and rivers are shown for context; classif D classification.
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in the multiband statistical signatures of each cover class in

each image.

The classification accuracy of our final land cover data set

was assessed by using an error matrix (Lillesand and Kiefer

2000). The error matrix was created by (1) generating at least

25 random points at least 200 m apart in floodplain areas within

each land cover class, (2) attributing each point with the class

value, and (3) having a second user (here considered as refer-

ence or truth) independently attribute each point to one of the

four land cover classes by visual interpretation of NAIP imag-

ery (Cleve et al. 2008). Visual interpretation was occasionally

supplemented with Bing imagery (0.3-m resolution from mid-

July 2010; Microsoft Corporation) when land cover in NAIP

images was unclear. All imagery was viewed by the user at a

1:1,500 map scale. The error matrix was used to compute the

producer’s and user’s accuracy for each land cover type. The

producer’s accuracy is computed as the percent of land cover

types identified by a user in the imagery that are classified as

such by the supervised classification and reflects errors of com-

mission (false positives). The user’s accuracy is computed as

the percent of land cover types from the supervised classifica-

tion that are identified as such by an observer viewing the imag-

ery and reflects errors of omission (false negatives).

Redband Trout, Woody Riparian Vegetation, and
Stream Temperature

Woody vegetation and stream temperature.—We evaluated

the ability of woody vegetation from our NAIP image classifi-

cation, in addition to stream temperature from a spatially

explicit stream temperature model, to predict the distribution

(occurrence) and density of Redband Trout by using logistic

and quantile regression models in a model selection frame-

work. Woody vegetation was summarized as a percentage of

raster cells within a 5-m buffer of the National Hydrography

Dataset (1:24,000 scale) stream segments for 200 m upstream

and downstream of each sample site (Figure 2). Hereafter we

refer to this measure as percent woody vegetation. Mean

August stream temperatures (�C) were obtained as spatially

explicit predictions from two stream temperature models

developed from our study area (Isaak et al. 2010). While

we provide a cursory overview of the stream temperature

models here, substantial detail on them can be found on

the NorWeST website (http://www.fs.fed.us/rm/boise/AWAE/

projects/NorWeST.html) and in related publications (Ver

Hoef et al. 2006; Isaak et al. 2015). The temperature models

we used were fit using spatial statistical models for stream net-

works (Ver Hoef et al. 2006; Isaak et al. 2010; Isaak et al.

2015). The response variable in the models was mean August

stream temperature from tens of thousands of summer stream

temperatures measured in the field, and stream temperature

was predicted by several GIS-derived geomorphic, hydrologic,

and climatic covariates. Covariates included the following:

elevation, percent canopy cover (mean percent underlying 1-

km stream segment; National Land Cover Dataset, 30-m reso-

lution), stream slope, drainage area, latitude, proximity to

lakes, base flow index values (Wolock 2003), and presence of

a tailwater below a dam, which are all static in time. The two

temporally varying predictors (by year) were mean August air

temperature and mean August streamflows, which allow for

predictions under future climates. The models predict mean

August stream temperature for each year from 1993 to 2011,

including 1993–2011 averages. Because the covariates are

GIS-derived predictors, mean August stream temperatures are

predicted at the spatial grain of 1-km stream segments for all

streams within each modeling domain. We used temperature

predictions from two separate models: an Upper Snake–Bear

River model that included Salmon Falls Creek (root mean

square prediction error [RMSPE] D 1.47�C; r2 D 0.86) and a

mid-Snake River model that included the Owyhee River basin

(RMSPE D 1.06�C; r2 D 0.92). The 1993–2011 average mean

August stream temperature for the stream segment on which

TABLE 1. Land cover types identified during a supervised, object-oriented classification of imagery from the NAIP.

Land cover class Description and key characteristics in aerial photographs

Bare ground Unvegetated areas including roads, rock, and sand and gravel bars.

Herbaceous

riparian

vegetation

Grasses, forbs, and sedges growing in areas that are seasonally inundated with high flows or influenced

by an elevated water table in the riparian zone or near springs or seeps. Characterized by uniform,

short vegetation height and high greenness. Pattern is clustered and continuous.

Woody vegetation Willow (Salix spp.), cottonwood (Populus spp.), dogwood (Cornus spp.), and other woody shrubs and

trees in the riparian zone, and aspen (P. tremuloides), juniper (Juniperus spp.), and subalpine and

Douglas fir (Abies lasiocarpa and Pseudotsuga menziesii) in the uplands. Characterized by vertical

structure, as indicated by shading in imagery and robust, leafy growth (high greenness). Pattern is

often clustered and continuous.

Upland vegetation Includes a continuum of upland vegetation ranging from grasses (cheatgrass [Bromus tectorum], native

bunchgrasses [Poaceae]) to sagebrush [Artemisia spp.] to deciduous shrubs (serviceberry

[Amelanchier spp.], chokecherry [Prunus spp.]). Characterized by low to moderate greenness and a

clustered and continuous pattern.
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our field sites occurred was used to represent stream tempera-

ture at each site; we could not use year-specific temperature

predictions because model predictions were not available for

2013 and 2014 when many of our field sites were sampled.

Fish sampling.—From 2008 to 2014, 52 stream sites were

sampled for salmonids in the Salmon Falls Creek and Owyhee

River basins (Figure 1); the 27 sites in Salmon Falls Creek

were sampled from 2013 to 2014, and the 25 sites in the Owy-

hee Basin were sampled from 2008 to 2010 (Kozfkay et al.

2010; Butts et al. 2011). Nineteen sites in Salmon Falls Creek

(in Nevada) were originally selected for sampling based on a

generalized random tessellation stratified (GRTS) sampling

design (a spatially distributed design stratified by stream

order) used for a Redband Trout survey by the Idaho Depart-

ment of Fish and Game in 2003 (Meyer et al. 2014); however,

six sites could not be sampled because access was denied by

landowners. We sampled an additional 14 sites to sample Red-

band Trout populations identified during a recent species ran-

gewide status assessment (Muhlfeld et al. 2015) that were not

encompassed by the GRTS design, to maximize spatial cover-

age in the watershed (in Nevada), to represent the range of

stream habitat conditions in the watershed, and to increase

sample size; sites sampled on populations occupying an inter-

connected drainage network were located on unique tributaries

as to minimize any potential effect of spatial autocorrelation in

our data. In the Owyhee Basin, sites were sampled as part of a

long-term monitoring program for Redband Trout by the Idaho

Department of Fish and Game for which sites were selected

because they were previously found to be occupied by Red-

band Trout (Zoellick et al. 2005; Kozfkay et al. 2010; Butts

et al. 2011).

Salmonids were sampled at each site in a reach, which was

typically 100 m in length (thalweg; range D 50–165 m), and

isolated with block nets or natural impassable features, such as

beaver dams. Fish were sampled with multiple-pass electro-

fishing using one or two Smith-Root LR-24 or 15-B backpack

electrofishers and two- to four-person crews and by visual

observation (one person) at one site. We used visual observa-

tion to estimate abundance at one intermittent reach, where

fish were congregated into two small pools and were thought

to be thermally stressed. Fish were easily identified and the

total length of counted individuals was estimated. After fish

FIGURE 2. Example of (A) original NAIP imagery that was (B) classified as woody vegetation using object-oriented, supervised classification and then

(C) summarized as percent woody vegetation within a 5-m stream buffer.
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sampling at the 27 Salmon Falls Creek sites, we assessed

instream habitat, streambank conditions, and riparian vegeta-

tion using transect-based sampling and U.S. Bureau of Land

Management Multiple Indicator Monitoring (Burton et al.

2011) measures of riparian condition. At each site, 10 transects

were established every 10 m along the reach beginning at the

downstream reach boundary. Transects were placed across the

stream channel at bank-full height, which was identified based

on the height of depositional surfaces, the presence of peren-

nial vegetation, topographic breaks, bank substrates, undercut

banks, and water stain lines (Harrelson et al. 1994; Burton

et al. 2011). Channel depth, wetted width, water depth, stream

substrate, and cover were recorded at 10 equidistant points

along each transect (Platts et al. 1983). Stream substratum at

each point was classified according to the modified Wentworth

scale as follows: bedrock, silt or clay (<0.064 mm in diameter

on b-axis), sand (0.064–2.000 mm), gravel (2–15 mm), pebble

(15–64 mm), cobble (64–256 mm), and boulder (>256 mm)

(Cummins 1962). Cover was classified as follows: boulder,

large wood (>10 cm in diameter, >4 m in length), submergent

vegetation (aquatic macrophytes), overhanging bank veg-

etation, and undercut bank (>10 cm in depth). The surface

water elevation difference between upstream and downstream

reach boundaries was measured using a survey level and stadia

rod, and stream slope was computed as the elevation differ-

ence divided by thalweg length (expressed as a percentage).

Residual pool depth was measured as maximum pool depth

minus water depth at the downstream riffle crest for all pools

identified using the classification of Hawkins et al. (1993).

Woody vegetation height was classified directly above each

transect endpoint at the channel margin as 0.0–0.5 m, 0.5–

1.0 m, 1.0–2.0 m, 2.0–4.0 m, 4.0–8.0 m, and > 8.0 m (Burton

et al. 2011). Streambank stability was classified at each

transect between the water’s edge and bank-full height as

follows: fracture, slump, slough, eroding, or absent (Burton

et al. 2011). At all sites, reach area was computed as reach

length multiplied by the mean of multiple wetted width

measurements.

At all sites the abundance of Redband Trout was esti-

mated using the Zippin removal method (Zippin 1958) as

implemented in the FSA package in Program R (Ogle

2013; R Core Team 2015); to reduce potential bias due to

size-dependent capture efficiency the estimates were done

separately for fish < 100 mm TL and � 100 mm TL and

then summed. The visual count was divided by a 0.8 detec-

tion probability as an estimate of abundance (Bozek and

Rahel 1991). The density of Redband Trout was expressed

as the number of individuals per 100 m2, which was com-

puted by dividing the abundance estimate by the wetted

reach area multiplied by 100. The density of Brown Trout

Salmo trutta greater than 100 mm TL (number/100 m2)

was also evaluated as a biotic measure of local habitat that

could influence Redband Trout density through predation

of small individuals.

Redband Trout occurrence.—We evaluated the ability of

percent woody vegetation and mean August stream tempera-

ture to predict Redband Trout occurrence using logistic regres-

sion models within a model selection framework. Our global

model included four predictor variables: percent woody vege-

tation, mean August stream temperature, a quadratic tempera-

ture term, and an interaction term between percent woody

vegetation and temperature (main effect term only). The

response variable was Redband Trout presence (1) or absence

(0) at a stream site. This global model was based on past

research showing that the effect of woody vegetation on Red-

band Trout was conditional on stream temperature (i.e., a

woody vegetation £ temperature interaction; Zoellick and

Cade 2006) and that Redband Trout typically do not occupy

very cold or warm streams (thus requiring a quadratic term;

Meyer et al. 2010). In addition to the global model, two addi-

tional candidate models were evaluated based on a subset of

terms in the global model. The first candidate model included

both the temperature main effect and quadratic terms and per-

cent woody vegetation but did not include the temperature £
percent woody vegetation interaction. The second model only

included the two temperature terms. Because salmonids are

known coldwater stenotherms and their distribution has

repeatedly been shown to be influenced by temperature (Zoel-

lick 1999; Meyer et al. 2010; Wenger et al. 2011), we

included both temperature terms in all candidate models not to

evaluate whether temperature is important to Redband Trout

but rather to estimate its effect size in our data (Johnson 1999;

Arnold 2010). Akaike information criterion adjusted for small

sample size (AICc) was used to evaluate the plausibility of all

candidate models; the model with the lowest AICc value was

considered the most plausible. Akaike weights were computed

as a measure of the probability that the model is the correct

model for models within 4 AICc units (DAICc) of the best

model (i.e., plausible models; Burnham and Anderson 2002).

If multiple models were plausible (DAICc < 4), then model

averaging was performed with shrinkage (Lukacs et al. 2010)

and Akaike weights to estimate parameters and standard errors

based on model selection and parameter uncertainty. Model fit

was evaluated with a Hosmer–Lemeshow test with 10 groups

(g D 10; Hosmer and Lemeshow 2000). Predictive perfor-

mance was evaluated using a fivefold, cross-validated area

under the curve (AUC) of a receiver operating characteristic

plot, where values of 0.5 indicate no discrimination (predictive

ability) and values of 1.0 indicate complete model discrimina-

tion (Hosmer and Lemeshow 2000). Logistic regression mod-

els were fit using the glm function with a logit link in Program

R (R Core Team 2015).

Redband Trout density.—We also evaluated percent woody

vegetation, in addition to mean August stream temperature, as

a predictor of Redband Trout density (number/100 m2) using

quantile regression (Cade and Noon 2003). Modeling the

quantiles of a response variable distribution, as opposed to the

mean response typically modeled in regression analysis, can
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be more informative for understanding ecological processes.

When upper quantiles are modeled they effectively represent

the potential maximum response to one or more variables at

different levels of those variables and thus can be viewed as

an evaluation of limiting factors (Cade and Noon 2003). As

before, our global quantile regression model included four var-

iables: percent woody vegetation, mean August stream tem-

perature, a quadratic temperature term, and an interaction term

between percent woody vegetation and temperature. Candidate

models were the same two subsets of the global used for occur-

rence modeling. All quantile regression models were fit to the

90th percentile (0.9 quantile) of the response variable, which

was the loge transformed Redband Trout density (all sizes;

Redband Trout/100 m2 C 1). Models were fit using the quan-

treg package (Koenker 2013) in Program R (R Core Team

2015), parameter standard errors were estimated using the xy-

bootstrap method, and models were evaluated using the AICc

statistic developed for quantile regression: rqAICc (Cade et al.

2005). As before, the model with the minimum rqAICc was

considered the most plausible, and models within < 4 rqAICc

units were considered plausible as well. If needed, model aver-

aging was done using shrinkage and Akaike weights. Model fit

was evaluated using the quantile coefficient of determination

(R1), which represents the proportional reduction in objective

function by a model when compared to an intercept-only

model (Cade et al. 2005).

Comparisons with Field Data

We compared the ability of percent woody vegetation as

classified from NAIP imagery to predict Redband Trout occur-

rence and density to that of field-measured instream and ripar-

ian habitat. We did so by comparing a broader set of candidate

models that included field-measured habitat variables at 27

sites in Salmon Falls Creek. Prior to developing candidate

models and performing model selection, we used Spearman

rank correlations to identify and remove highly correlated hab-

itat variables (rs > 0.7) from consideration in competing mod-

els and used a principal components analysis to visualize

interrelationships among field habitat variables, percent woody

vegetation, and stream temperature. We used a model selec-

tion framework to identify the most plausible models from a

candidate set that included the candidate models with percent

woody vegetation used previously, candidate models with

both temperature terms (linear and quadratic) and one of the

field-measured habitat variables, or models with only field-

measured habitat variables. However, since detailed habitat

assessments were only collected in Salmon Falls Creek and,

thus, our sample size was limited to only 27 sites, we con-

strained our candidate models to have only three predictor var-

iables to keep our sample size to variable ratio near 10:1; our

one exception was that we also fit our global model (with the

woody vegetation £ temperature interaction term) that was

used in previous analyses because of the importance of that

model as shown by previous research (Zoellick and Cade

2006). Model selection statistics and Akaike weights were

used to assess the plausibility of candidate models and perform

model averaging (with shrinkage) if necessary.

RESULTS

Supervised NAIP Image Classification

In all, 325 NAIP image tiles were classified into four land

cover types using the supervised classification. The overall

accuracy of the final NAIP imagery-based land cover classifi-

cation was 76.0% (Table 2). The producer’s and user’s accura-

cies were 84% and 70%, respectively, for the woody

vegetation class.

Redband Trout, Woody Riparian Vegetation, and
Stream Temperature

Redband Trout occurrence.—Redband Trout were col-

lected at 37 of 52 sites (71.2%) in both the Salmon Falls Creek

and Owyhee River basins. The logistic regression model with

percent woody vegetation and both temperature terms was the

most plausible. The global model with the percent woody veg-

etation £ temperature interaction term was also plausible

TABLE 2. Error matrix used to assess the producer’s accuracy and user’s accuracy of a supervised classification of NAIP imagery into four land cover types. At

least 25 random points at least 200 m apart were used to assess the accuracy of each cover type. The values represent the number of points within each classified

and observed class type. The producer’s accuracy and user’s accuracy are defined as a percentage.

User observed
Supervised classification, total, and

producer’s accuracy Woody Herbaceous Upland Bare Total User’s accuracy (%)

Woody 21 4 4 1 30 70.0

Herbaceous 4 18 1 23 78.3

Upland 1 34 35 97.1

Bare 16 25 41 61.0

Total 25 23 55 26 129

Producer’s accuracy (%) 84.0 78.3 61.8 96.2 76.0
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(DAICc D 2.4) (Table 3); however, inclusion of the interaction

term did not effectively reduce the log-likelihood, suggesting

that the interaction term explained very little additional varia-

tion in occurrence, the interaction model was obsolete, and the

best model was the only plausible model (Arnold 2010). The

most plausible model fit the data (Hosmer–Lemeshow test:

x2 D 12.5, P D 0.132) but only had moderate out-of-sample

predictive ability (fivefold, cross-validated AUC D 0.723).

Parameter estimates and model predictions showed a positive,

precise effect of percent woody vegetation and a unimodal and

less precise response to temperature that peaked near 15�C
(Table 4; Figure 3A, B). The probabilities were lower at both

the coldest and warmest mean August temperatures, with less

precise probabilities at the warmest temperatures (Figure 3A).

Redband Trout density.—Across all sites where Redband

Trout were present, densities averaged 29.1 Redband

TABLE 3. Number of parameters (K), log-likelihoods, Akaike information criterion (AIC) values, and Akaike weights (wi) for candidate logistic and quantile (t
D 0.9) regression models predicting Redband Trout occurrence and density as a function of the covariates in Salmon Falls Creek, Nevada, and the Owyhee River,

Idaho. The covariates included mean August temperature (temp; �C) from a spatially explicit stream temperature model and percent woody vegetation from a

supervised classification of NAIP imagery. Logistic regression models were compared using Akaike information criterion corrected for small sample size

(AICc), whereas quantile regression models were compared using the AICc statistic developed for quantile regression (rqAICc). Akaike weights were computed

for models where DAICc or DrqAICc < 4. Fivefold, cross-validated AUC (logistic) and R1 (quantile) provide measures of model fit.

Model class Candidate models K

Log-

likelihood

AICc or

rqAICc

DAICc or

DrqAICc wi

AUC or

R1

Logistic Percent woody vegetation C
temp C temp2

4 ¡24.798 58.447 0.00 0.767 0.723

Percent woody vegetation £
temp C temp2

5 ¡24.764 60.832 2.38 0.233 0.688

Temp C temp2 3 ¡29.619 65.737 7.29 0.589

QuantiletD0.9 Percent woody vegetation C
temp C temp2

4 ¡108.864 229.032 0.00 0.464 0.133

Temp C temp2 3 ¡110.436 229.724 0.69 0.328 0.106

Percent woody vegetation £
temp C temp2

5 ¡108.381 230.629 1.60 0.209 0.141

TABLE 4. Parameter estimates (bi) and standard errors (SE) for logistic and quantile (tD 0.9) regression models predicting Redband Trout occurrence and den-

sity, respectively. Models with an asterisk indicate model-averaged parameter estimates and standard errors (averaged with Akaike weights and shrinkage).

Summed Akaike weights (
P

wi) convey variable importance.

Basin Model Parameter bi SE
P

wi

Salmon Falls Creek and

Owyhee River (n D 52)

Logistic Intercept ¡23.189 15.918 1.00

Temperature (�C) 2.904 2.171 1.00

Temperature2 ¡0.096 0.073 1.00

Percent woody vegetation 0.040 0.014 1.00

*QuantiletD0.9 Intercept ¡30.551 5.025 1.00

Temperature 4.267 1.010 1.00

Temperature2 ¡0.134 0.041 1.00

Percent woody vegetation 0.039 0.049 0.69

Woody vegetation £ temperature ¡0.001 0.003 0.22

Salmon Falls Creek (n D 27) *Logistic Intercept ¡156.564 74.179 1.00

Temperature 22.550 10.458 1.00

Temperature2 ¡0.803 0.366 1.00

Percent woody vegetation 0.011 0.019 0.39

QuantiletD0.9 Intercept ¡44.952 39.430 1.00

Temperature 6.935 5.188 1.00

Temperature2 ¡0.255 0.170 1.00

Percent woody vegetation 0.012 0.012 1.00
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Trout/100 m2 and ranged from 0.3 to 150.5 per 100 m2 (Fig-

ure 3C). While the candidate model with percent woody vege-

tation and temperature (including the temperature quadratic

term) was the most plausible when explaining variation in the

90th percentile of Redband Trout density, all candidate models

were plausible (DrqAICc � 1.60; Table 3). However, even the

most plausible model explained only 13.3% more variance

than an intercept-only model (R1
tD0:9 D 0.133; Table 3). The

model with only the two temperature terms was the next most

plausible model (DrqAICc D 0.069; Table 3). Even the model

with the woody vegetation £ temperature interaction was

plausible and explained some variation in Redband Trout den-

sities beyond the most plausible model as shown by the reduc-

tion in log-likelihood (Table 3). After model averaging, the

percent woody vegetation£ temperature interaction parameter

estimate was effectively reduced to 0, and the remaining

parameter estimates predicted that Redband Trout densities

only increased in response to woody vegetation when tempera-

tures were near 15�C (Figure 3D). Although temperature

effects were precisely estimated, the parameter estimates for

percent woody vegetation were less precise (Table 4).

Comparison with Field Data

Redband Trout were collected at 15 of 27 (55.5%) sites in

Salmon Falls Creek, where densities ranged from 0.3 to 69.8

Redband Trout per 100 m2 when the species was present.

Spearman’s rank correlations only identified one set of highly

correlated habitat variables. Mean wetted width, mean water

depth, and residual pool depth were all correlated measures of

FIGURE 3. Top panels show the predicted Redband Trout occurrence probabilities from a logistic regression model as a function of (A) mean August stream

temperature and (B) the percent of woody vegetation (classified from NAIP imagery) in Salmon Falls Creek and Owyhee River basins combined. The dashed

lines represent 90% confidence intervals, and the circles represent observed presences (1; black cirlces) or absences (0; open circles). The bottom panels represent

(C) the observed Redband Trout density and (D) the predicted densities from a quantile (t D 0.9) regression model as a function of mean August stream tempera-

ture and percent woody vegetation in Salmon Falls Creek and Owyhee River basins combined.
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stream size (rs D 0.86–0.88); we retained residual pool depth

as the one measure of stream size from that variable set most

likely to influence Redband Trout occurrence and density.

Large wood was never observed, root wads were observed at

only one site, and these two variables were excluded from any

candidate models (Table 5). No other variable pairs had a high

enough correlation to meet our screening criterion (rs D 0.7)

and so all remaining variables were included in the candidate

models. A scree plot from the principal component analysis

suggested that the first two principal components explained a

majority of the variation among habitat variables; axis 1

explained 30.3% of the variance and axis 2 explained 16.1%.

Sites with high scores on axis 1 and low scores on axis 2 repre-

sented larger, warm, low-gradient sites, whereas sites with low

axis-1 scores and high axis-2 scores represented smaller, cold,

high-gradient sites (Figure 4). A second gradient, largely inde-

pendent of the first gradient, contrasted sites that had more

woody riparian vegetation and cobble substrates versus sites

TABLE 5. Summary statistics of habitat variables measured at sites where Redband Trout were present and absent in Salmon Falls Creek, Nevada, in 2013 and

2014 (nD 27). Summaries are also given for percent woody vegetation and mean August stream temperature variables for Salmon Falls Creek and Owyhee River

basins combined (nD 52).

Variable Redband Trout Mean Minimum Maximum

Woody vegetation (%) Present 73.4 3.2 98.6

Absent 47.3 9.5 88.2

Including Owyhee River data Present 74.2 3.2 100.0

Absent 48.6 9.5 88.2

Mean August temperature (�C) Present 14.3 12.4 16.2

Absent 14.8 10.0 17.2

Including Owyhee River data Present 15.3 12.4 18.9

Absent 15.1 10.0 17.5

Slope (%) Present 2.9 0.3 8.2

Absent 1.7 0.02 7.2

Mean wetted width (m)a Present 2.53 0.58 7.08

Absent 5.81 0.37 11.50

Mean water depth (m)a Present 0.11 0.03 0.27

Absent 0.24 0.02 0.47

Residual pool depth (m) Present 0.24 0.03 0.89

Absent 0.56 0.02 1.40

Aquatic vegetation (%) Present 9.8 0.0 55.8

Absent 9.5 0.0 52.5

Cobble (%) Present 21.5 0.0 55.0

Absent 13.6 0.0 36.4

Fines (silt, clay, sand; %) Present 18.9 0.0 96.2

Absent 27.1 1.8 66.7

Small wood (%) Present 3.0 0.0 16.7

Absent 5.0 0.0 32.2

Large wood (%) Present 0.00 0.00 0.00

Absent 0.00 0.00 0.00

Undercut bank (%)b Present 0.97 0.00 7.50

Absent 0.17 0.00 2.08

Streambank slough slump (%) Present 14.3 0.0 40.0

Absent 17.2 0.0 77.8

Channel width : depth ratioa Present 13.4 5.2 25.2

Absent 19.1 7.8 37.4

Woody vegetation height (rank: 1–6) Present 3.4 1.6 5.6

Absent 2.5 1.2 5.1

Brown Trout (>100 mm TL; number/100 m2) Present 0.09 0.00 1.03

Absent 0.19 0.00 1.36

aThe variable was not included in the candidate models but is summarized for reference.
bThe model would not converge when undercut bank was included in the presence–absence models; thus, undercut bank was excluded from the candidate models.
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with more fine sediment and more aquatic vegetation

(Figure 4). Thus, although not strongly correlated, there were

general patterns among habitat variables that showed that cer-

tain habitat conditions often occurred in concert. When Red-

band Trout occurrence and density data were overlain on these

patterns it was evident that the species most often occurred in

sites with moderate temperatures and slopes and with more

classified woody vegetation (from NAIP imagery), taller

woody vegetation as measured in the field, and more coarse

substrates but with a couple of notable exceptions (upper right

of the principal component analysis biplot in Figure 4).

Redband Trout occurrence.—Percent woody vegetation

and mean August stream temperature predicted Redband Trout

occurrence as well as or better than field measures of instream

and riparian habitat in the 27 sites surveyed in Salmon Falls

Creek. The candidate logistic regression model with only

mean August temperature (both linear and quadratic terms)

was the most plausible model, and all models with percent

FIGURE 4. Biplot of principal component 1 (PC1) versus principal component 2 (PC2), showing the main habitat gradients and associations among habitat var-

iables in Salmon Falls Creek, Nevada. The percent variance that is explained by each axis is shown in parentheses. The arrows representing the habitat variables

are scaled by 4.4 times the loading coefficient. The site locations are shaded by the presence or absence of Redband Trout, and the site symbols are scaled posi-

tively by fish density. The variable abbreviations are as follows: naip_woody D percent woody vegetation, Slope_pct D percent stream slope, WoodVegHt D
woody vegetation height, PCob D percent cobble, PFines D percent fines (silt, clay, sand), PctAqVeg D percent aquatic vegetation, PctUndBnk D percent

undercut bank, ResPoolDepth D residual pool depth, Temperature D mean August stream temperature, and BNTgt_den D Brown Trout greater than 100 mm

TL/100 m2.
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woody vegetation ranked highest (DAICc < 4; Table 6).

However, similar to the analysis of the full data set, the can-

didate model with a percent woody vegetation £ temperature

interaction explained no additional variation in Redband

Trout occurrence than the same model without the interaction

term, suggesting very little support for the interaction term

(Arnold 2010). All other three-variable models containing

the two temperature terms and one field-measured habitat

variable were slightly less plausible than the top two models

but still plausible nonetheless (Table 6). Models with field-

measured habitat only (excluding modeled stream tempera-

ture) had no support (Table 6). The most plausible model

containing both stream temperature terms and percent woody

vegetation fit the data (Hosmer–Lemeshow test: x2 D 7.55,

P D 0.479) and showed good out-of-sample predictive ability

(fivefold, cross-validated AUC D 0.83). In fact, almost all

plausible models (DAICc � 4) showed good predictive ability

(cross-validated AUC > 0.80). Model-averaged parameter

estimates for the top two models showed precise temperature

effects but an imprecise parameter estimate for percent

woody vegetation (Table 5). Occurrence probabilities were

highest at mean August stream temperatures near 14.0�C but

with a narrower temperature use range than observed across

all 52 sites combined (Figure 3A), and probabilities

increased with higher percentages of woody vegetation

(Figure 5A, B).

TABLE 6. Number of parameters (K), log-likelihoods, Akaike information criterion, and Akaike weights (wi) for candidate logistic and quantile (t D 0.9)

regression models predicting Redband Trout occurrence and density as a function of covariates in Salmon Falls Creek, Nevada. The covariates included mean

August temperature (temp; �C) from a spatially explicit stream temperature model and percent woody vegetation from a supervised classification of NAIP imag-

ery. Field-measured covariates are defined in the Methods section. Logistic regression models were compared using AICc (the Akaike information criterion cor-

rected for small sample sizes), whereas quantile regression models (t D 0.9) were compared using rqAICc (the AICc statistic developed for quantile regression).

Akaike weights were computed for models where DAICc or DrqAICc < 4. Fivefold, cross-validated AUC (logistic) and R1 (quantile) provide measures of model

fit.

Model class Candidate models K

Log-

likelihood

AICc or

rqAICc

DAICc or

DrqAICc wi

AUC

or R1

Logistic

Spatial Temp C temp2 3 ¡9.832 26.708 0.000 0.244 0.855

Temp C temp2 C% woody vegetation 4 ¡8.902 27.621 0.914 0.154 0.811

% Woody vegetation £ temp C temp2 5 ¡8.893 30.643 3.940 0.079 0.633

Field

covariates included

Temp C temp2 C% aquatic vegetation 4 ¡9.306 28.430 1.722 0.103 0.817

Temp C Temp2 C% bank slough slump 4 ¡9.362 28.542 1.835 0.097 0.803

Temp C temp2 C residual pool depth 4 ¡9.567 28.952 2.244 0.079 0.844

Temp C temp2 C% cobble 4 ¡9.658 29.135 2.427 0.072 0.811

Temp C temp2 C slope 4 ¡9.779 29.376 2.668 0.064 0.844

Temp C temp2 C Brown Trout (>100 mm) density 4 ¡9.812 29.441 2.734 0.062 0.794

Temp C temp2 C woody vegetation height 4 ¡9.814 29.446 2.738 0.062 0.750

Temp C temp2 C% fines 4 ¡9.823 29.465 2.757 0.061 0.828

Field only covariates

(DAICc <10)

Residual pool depth 2 ¡15.495 35.490 8.782 0.594

Residual pool depth C woody vegetation height 3 ¡14.413 35.870 9.162 0.622

Residual pool depth C% cobble 3 ¡14.730 36.503 9.795 0.550

Residual pool depth C% bank slough slump 3 ¡14.760 36.563 9.855 0.678

Quantile (t D 0.9)

Spatial % Woody vegetation C temp C temp2 4 ¡40.650 94.156 6.174 0.040 0.448

% Woody vegetation £ temp C temp2 5 ¡40.053 96.306 8.324 0.014 0.461

Temp C temp2 3 ¡44.178 98.174 10.192 0.005 0.371

Field

covariates included

Temp C temp2 C slope 4 ¡37.562 87.982 0.000 0.873 0.508

Temp C temp2 C% cobble 4 ¡41.586 96.030 8.048 0.016 0.429

Temp C temp2 C Brown Trout (>100 mm) density 4 ¡41.619 96.095 8.113 0.015 0.428

Temp C temp2 C% aquatic vegetation 4 ¡41.705 96.267 8.285 0.014 0.426

Temp C temp2 C% fines 4 ¡42.185 97.226 9.244 0.009 0.416

Temp C temp2 C woody vegetation height 4 ¡42.370 97.596 9.614 0.007 0.412

Temp C temp2 C% bank slough slump 4 ¡42.396 97.649 9.667 0.007 0.412

Temp C temp2 C residual pool depth 4 ¡42.433 97.723 9.741 0.007 0.411

Field only covariates Slope (%) (only best model shown) 2 ¡47.849 102.741 14.759
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Redband Trout density.—Also in Salmon Falls Creek, the

candidate quantile regression models with percent woody veg-

etation and mean August temperature were among the top-

ranked models (Table 6). However, the most plausible model

was one that contained the two temperature terms and

field-measured reach slope. The model explained 50.8% of the

variation in the 90th percentile of Redband Trout densities

(R1
tD 0:9 D 0.508), and no other model was within 6 DAICc

units (Table 6). This model showed the upper quantile (t D
0.9) of densities to be highest near 13.5�C and higher in

steeper streams, although bootstrapped 90% confidence inter-

vals showed high uncertainty at the lowest temperatures and

highest slopes (Figure 6). Exploring the next two most plausi-

ble models, both with temperature and percent woody vegeta-

tion terms, showed them to explain 44.8–46.1% of the

variation in the upper quantile of Redband Trout density, and

model-averaged parameter estimates (from both models with

and without the interaction term) showed densities to be high-

est at 13.5�C with more woody vegetation (Figure 5D;

Table 5). The best model containing only field-measured habi-

tat variables was a single-variable model with stream slope,

but it had little support (DrqAICc D 14.76; Table 6).

DISCUSSION

We found that woody riparian vegetation as classified from

NAIP imagery, when used in conjunction with spatial predic-

tions of mean August stream temperature from existing mod-

els, can be used to characterize Redband Trout habitat in

desert streams. With one exception, percent woody vegetation

FIGURE 5. Top panels show the predicted Redband Trout occurrence probabilities from a logistic regression model as a function of (A) mean August stream

temperature and (B) percent woody vegetation (classified from NAIP imagery) in Salmon Falls Creek only. The dashed lines represent 90% confidence intervals,

and the circles represent observed presences (1; black circles) or absences (0; open circles). The bottom panels represent (C) the observed Redband Trout density

and (D) the predicted densities from a quantile (t D 0.9) regression model as a function of mean August stream temperature and percent woody vegetation in

Salmon Falls Creek only.
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as classified from NAIP imagery and modeled stream tempera-

tures together were better descriptors of Redband Trout habitat

than temperature and almost all of the instream or riparian

habitat variables measured in the field using common habitat

assessment protocols. Thus, despite some classification inac-

curacy, NAIP imagery and existing spatial predictions of

mean August stream temperature together can provide a

spatial context to previous field research that has linked Red-

band Trout density to stream shading and temperature (or sur-

rogates) (Li et al. 1994; Zoellick and Cade 2006). Our study

also represents another example of how aerial imagery can be

useful in understanding aquatic habitat, species distributions,

and stream habitat management needs across large geographic

regions.

While models containing woody vegetation together with

stream temperature were often the best, or nearly the best,

models evaluated, we think that predictions should be used

cautiously despite the fact that both woody vegetation and

stream temperature are spatial variables that could allow for

spatially explicit predictions across northern Nevada and

southwestern Idaho (e.g., Dauwalter and Rahel 2008). The

models fit for both the Owyhee River and Salmon Falls Creek

basins had much less predictive capability than the models fit

solely to the Salmon Falls Creek data set. We believe this is

largely driven by the fact that most Owyhee River Basin sites

were occupied by Redband Trout (84%), which is not surpris-

ing since those sites were selected for long-term population

monitoring based on previous occurrences of the species. The

lack of absences precluded defining well the realized thermal

niche of Redband Trout at all sites across both basins. Despite

this, the parameter estimate for woody vegetation was pre-

cisely estimated and model predictions showed precise predic-

tions of occurrence probability across the range of percent

woody vegetation (Figure 3B). In contrast, in Salmon Falls

Creek the realized thermal niche was precisely estimated,

whereas the effect of woody vegetation was highly uncertain

due to both parameter and model uncertainty. Despite the

uncertainty, the best occurrence models for Salmon Falls

Creek had fivefold, cross-validated AUC values > 0.85, which

some consider to be excellent in predictive ability (Hosmer

and Lemeshow 2000). Even the quantile regression models

explained 45% of the variation in the 90th percentile of Red-

band Trout densities in Salmon Falls Creek, although predic-

tion intervals were wide at the lowest temperatures

(Figure 6A). The fact that our occurrence models had better

predictive ability than models predicting Redband Trout densi-

ties is not surprising given that it is often easier to predict a

species’ occurrence than its abundance (Stanfield et al. 2006).

Also not surprising is the fact that our models for Salmon Falls

Creek had better predictive ability than models fit with data

from both basins, as species models often have better predic-

tive ability when fit to data representing smaller spatial

domains (Wiley et al. 1997).

We attempted to minimize the influence of spatial autocor-

relation by revisiting the sites sampled under a spatially bal-

anced sampling design (GRTS design) and by selecting

additional sites on separate Redband Trout populations or sep-

arate tributaries within populations. However, we conducted

exploratory analyses of correlation in residuals through semi-

variograms that suggested spatial correlation was evident in

our logistic regression models but not our quantile regression

FIGURE 6. Observed and predicted densities of Redband Trout from a quan-

tile (t D 0.9) regression model as a function of (A) stream temperature and

(B) percent reach slope in Salmon Falls Creek. The dashed lines represent

90% bootstrapped confidence intervals.
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models. In fact, the correlation in Redband Trout occurrence

was limited from upstream to downstream but not downstream

to upstream, and it was prevalent within a distance of 15–

50 km (low sample size precluded precise identification of the

semivariogram range or the distance at which autocorrelation

was absent). The directional autocorrelation suggests that

active migration dynamics or downstream juvenile drift may

be occurring within populations or “patches” of Redband

Trout (Warren et al. 2014). The presence of spatial autocorre-

lation in species models often leads to a parameter bias near

25%, and accounting for autocorrelation can improve model

fit and predictions (Dormann 2007). We explored the use of

spatial statistical models for stream networks (Ver Hoef et al.

2006; Peterson et al. 2013) with our data, but we observed

mixed results for model selection and fit (comparing spatial to

nonspatial models) and thought that our low sample sizes (27

or 52) prohibited the precise estimation of the five extra

parameters describing upstream and downstream spatial corre-

lation (exponential models; one nugget, two sill, and two range

parameters) in addition to the fixed effects of interest (up to 10

parameters total)(Ver Hoef et al. 2014). If spatial autocorrela-

tion was present in our data, the effects of woody vegetation

and temperature were likely underestimated in our models,

and it further suggests that there is some underlying factor

structuring the occurrence of Redband Trout that was not

included in any of our candidate models. The scale and eco-

logical causes of spatial autocorrelation in Redband Trout

occurrence (or in other salmonids) should be explored further

and will likely require an extensive fish survey database, such

as that described by Meyer et al. (2014).

Our NAIP-based land cover data set was 76.0% correct

overall, which is slightly less accurate than other widely used

land cover data sets derived from the classification of satellite

imagery. For example, the National Land Cover Database

(NLCD) for 2006 is a land cover classification for the conter-

minous United States derived from Landsat Thematic Mapper

satellite data, with an 85% classification accuracy for the eight

main land cover classes (Wickham et al. 2013). Woody vege-

tation in our analysis was classified as herbaceous riparian or

upland vegetation 27% of the time, often because of the strong

infrared (greenness) signal of transitional areas between

woody vegetation in floodplains and upland vegetation, espe-

cially at higher elevations and on north aspect slopes, where

vegetation productivity is high outside of the floodplain or

riparian zone. This type of misclassification was pronounced

at one site in Salmon Falls Creek, where Redband Trout were

present but percent woody vegetation classification was esti-

mated to be only 3%. In fact, there was more woody riparian

vegetation at that site than was classified, but since our goal

was to evaluate the utility of classified NAIP imagery, we

retained that apparent outlier in all analyses. Exploratory anal-

ysis showed that retaining this site resulted in more uncertainty

in the models with woody vegetation as a covariate and less

precise parameter estimates, especially for models fit with

data from Salmon Falls Creek only. One option we could have

pursued was to reclassify that NAIP image to try to improve

its classification, which illustrates how classification accuracy

can vary image by image and could potentially be controlled

to some degree, depending on which individual features or

areas in an image required accurate classification.

One advantage of NAIP imagery is its high resolution (1 m)

when compared to satellite-derived products. The higher reso-

lution of NAIP imagery allowed for a more accurate classifica-

tion of thin corridors of woody riparian vegetation (<10 m in

width), which would be missed in a classification of 3-m Land-

sat Thematic Mapper data. While not explicitly part of this

study, in Salmon Falls Creek we did compare the predictability

of percent woody vegetation as characterized from NAIP

imagery (in addition to stream temperature) to percent woody

vegetation and percent canopy cover as characterized in the

2006 NLCD (K. A. Fesenmyer, unpublished data). Models

with NLCD-based covariates were less plausible than the best

model with percent woody vegetation from NAIP imagery

(DAICc � 1.35) or a model with temperature covariates only

(DAICc � 1.62). In addition, the parameter estimates for the

two NLCD-based covariates were estimated to be negative,

which contrasts with prior research on the effects of shade

from riparian vegetation and topography on Redband Trout

density (Zoellick and Cade 2006). The NLCD-based percent

canopy is included as a predictor in the NorWeST stream tem-

perature model as a measure of shade, with a parameter esti-

mate that suggests that a 10% increase in percent canopy

results in a 0.15�C decrease in mean August stream tempera-

ture. Our NAIP-based measure of percent woody vegetation

explained additional variance in Redband Trout occurrence

and density when compared with modeled temperatures that

included percent canopy as a variable. This could be due to

the higher resolution of NAIP imagery when compared to the

NLCD-based percent canopy derived from 30-m Landsat The-

matic Mapper imagery. Or, it could be that we summarized

woody vegetation along a higher-resolution hydrography

(1:24,000 scale) than that used for the NorWeST model

(1:100,000 scale hydrography). Using NAIP-based woody

vegetation as a predictor in our models may also have captured

its influence on instream habitat beyond shading, such as its

effects on stream morphology (e.g., root stabilization of stream

banks that reduces sedimentation and creates undercut bank

habitat) and terrestrial food subsidies (Wesche et al. 1987;

Baxter et al. 2005). Despite its apparent utility in describing

riparian vegetation in desert environments, our classification

of NAIP imagery in wetter, higher-elevation basins has shown

that woody vegetation is less distinguishable from productive

emergent grasses and sedges, including hayfields (Fesenmyer,

unpublished data).

Despite its utility in characterizing woody streamside vege-

tation in desert environments, supervised classification of

NAIP imagery is time intensive. After a training period, it

took about 0.5 h to process a single NAIP image. Across 325
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images that equaled 163 h, not including the additional time

required to obtain the NAIP imagery and some postprocessing

of the classified images. However, the use of aerial imagery

can still be more time efficient than field evaluations of ripar-

ian vegetation, and it naturally results in spatially continuous

data instead of site-specific field data that needs to be extrapo-

lated across an appropriate study area (Booth et al. 2007). In

addition, the free availability of NAIP imagery in Google

Earth and other GIS software allows users to simply scan and

view the imagery to get a quick sense of riparian vegetation

conditions and nearby land cover on focal streams without an

explicit classification (and the introduction of classification

error) and quantification of land cover. Thus, users should

evaluate whether NAIP image classification results in a sub-

stantial improvement over existing remote-sensing products

(or simply viewing the imagery) for their application.

The lack of an overriding influence of instream physical

habitat on salmonid distribution and abundance has been

shown in other studies. Stream temperature alone has been

shown to predict the occurrence of juvenile Bull Trout Salveli-

nus confluentus, as well as more complex models with temper-

ature and other instream habitat variables (Dunham et al.

2003). Likewise, the distribution of multiple salmonid species

in the Canadian Rockies has been shown to be largely deter-

mined by stream temperature (Paul and Post 2001). Dunham

and Vinyard (1997) found that instream habitat in desert

streams explained little of the variance in the biomass of

Lahontan Cutthroat Trout O. clarkii henshawi; biomass was

mostly explained by stream-to-stream variation, suggesting

that processes (abiotic and biotic) operating at the larger

stream scale (>1-km), such as annual streamflow patterns,

were influencing populations more than site-specific habitat

conditions in 25-m reaches. The inability of physical instream

habitat to predict salmonid abundance could be explained by

environmental influences at larger scales (Dunham and Vin-

yard 1997), as well as by variation in the abundance over time

due to environmental and demographic factors (Dauwalter

et al. 2009; Dochtermann and Peacock 2010). However, it

could also be due to the lack of precision with which instream

habitat is typically measured and was measured in this study.

Some authors have reported that up to 20 transects (spaced

every 2–3 mean stream widths) are needed for transect-based

sampling to precisely characterize instream habitat (Simonson

et al. 1994), and different habitat attributes can be more pre-

cisely measured than others (Roper et al. 2002).

Our models reaffirm the importance of both riparian vegeta-

tion and temperature to Redband Trout as shown in earlier

field and laboratory studies (Zoellick 2004; Zoellick and Cade

2006; Cassinelli and Moffitt 2010). Woody vegetation pro-

vides stream shade, can create instream cover and habitat com-

plexity, and can be an important source of terrestrial food

subsidies (Wesche et al. 1987; Dauwalter et al. 2014). It also

serves as an indicator of perennial streams. Although stream-

flows in high-desert streams can vary with annual changes in

precipitation, woody riparian vegetation requires a consistent

water source across multiple years (Busch and Smith 1995;

Caplan et al. 2012). Thus, the presence of woody riparian veg-

etation as observed in NAIP imagery should be useful in deter-

mining which streams regularly have enough water to support

Redband Trout populations (Zoellick 1999).

The abundance of woody vegetation can also be an indica-

tor of ungulate grazing. Grazing has been shown to reduce

riparian vegetation, increase stream temperatures, and, in

some cases, result in stream desiccation (Li et al. 1994). It can

also increase streambank erosion, resulting in wider and shal-

lower stream channels with shallower pools and increased sed-

imentation (Li et al. 1994; Bayley and Li 2008). Since riparian

vegetation can reflect the broader impacts to streams by ungu-

late grazing (Clary 1999), NAIP imagery needs to be evaluated

as a tool for monitoring the potential impacts of grazing on

riparian areas and for identifying streams that are likely candi-

dates for riparian vegetation restoration. Others have also

found high-resolution aerial photography to be useful for

riparian vegetation monitoring for environmental compliance

(Environmental Protection Agency Clean Water Act; Pahl

2010), assessment of stream function (U.S. Bureau of Land

Management; Clemmer 2001; Booth et al. 2007), or vegeta-

tion recovery due to changes in grazing practices (Booth et al.

2012).

In conclusion, we used object-oriented classification of

high-resolution aerial imagery to associate Redband Trout

with woody riparian vegetation across a 4-million-ha land-

scape. Our observation that field-measured habitat was, with

one exception, no more predictive of Redband Trout occur-

rence and density than remotely-sensed measures of woody

vegetation suggests that, at a minimum, high-resolution aerial

imagery when used in conjunction with existing stream tem-

perature models can be used as a coarse characterization of

Redband Trout habitat conditions in desert streams across

large geographic areas. This suggests that NAIP and other

high-resolution imagery could be a valuable tool for under-

standing stream habitat conditions for other species with links

to woody riparian vegetation in desert environments of the

interior western United States.
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