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s u m m a r y

In an ideal world, a few overall indicators of hydrologic alteration would adequately describe the degree
of hydrologic alteration caused by various forms of river regulation. Currently over 170 hydrologic indi-
cators have been developed to describe different components of flow regimes, including the widely used
Indicators of Hydrologic Alteration (IHA) that characterize the impact of river regulation on flow regimes
in environmental flow studies. Many of these IHA indicators are intercorrelated, resulting in considerable
information redundancy, which could lead to ineffective environmental flow management decisions. The
objective of this research is to develop a small set of independent and representative hydrologic indica-
tors that can best characterize hydrologic alteration caused by reservoirs and other forms of river regu-
lation. Two sets of pre- and post-dam streamflow records are used: (1) based on artificial simulations of a
wide range of reservoir release rules and (2) streamflow records for 189 gaging stations throughout the
United States. Principal component analysis was used to address the intercorrelation among the IHA
parameters. Results revealed that the recently introduced metrics termed ecodeficit and ecosurplus
can provide a good overall representation of the degree of alteration of a streamflow time series. Across
both datasets, 32 individual IHA statistics and several potential generalized indices, three indices based
on the ecodeficit and ecosurplus explained the most variability associated with the ensemble of 32 IHA
statistics.

� 2009 Elsevier B.V. All rights reserved.
Introduction

Rivers provide numerous goods and services for humankind,
including a source of water for domestic, industrial and agricul-
tural purposes, a means of power generation and waste disposal,
routes for navigation, and sites for recreation and spiritual activi-
ties (Ripl, 2003). At the same time, flow variability is well recog-
nized by ecologists as being the primary driver of riverine
ecosystem function and structure (Poff et al., 1997). Ironically,
the great utility of rivers has also resulted in their demise through
their extensive exploitation throughout the world, a process
greatly facilitated by the construction of thousands of dams glob-
ally (Nilsson et al., 2005; Poff et al., 2007). Although human manip-
ulation of river flows provides many societal benefits, it also
degrades and eliminates valuable ecosystem services and threat-
ens freshwater biodiversity by altering natural flow regimes (Bunn
and Arthington, 2002; Magilligan and Nislow, 2005). There is now
widespread understanding that the environment is a legitimate
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user of the river and that environmental flows, or the provision
of water within rivers to conserve freshwater biodiversity while
meeting the water demand of human society, are needed for most
riverine systems (Brown and King, 2003). However, there is little
consensus as to which hydrologic indicators should be used to
summarize instream flow properties analogous to the use of the
widely accepted metrics in the field of water supply engineering,
such as mean annual water supply yield and reliability of a
reservoir.

To evaluate the ecological effect of reservoir operations and
other forms of river regulation, and to design optimal reservoir re-
lease rules, indicators are needed to evaluate the overall ecological
health of the river and the degree of hydrologic alteration caused
by a particular operating policy. To date, over 170 hydrologic met-
rics have been published to summarize various aspects of the flow
regime, although there has been little consideration of the
correlation among indicators or the statistical redundancy
involved (see Olden and Poff, 2003). Consequently, researchers
are now confronted with the task of having to choose among a
large number of competing hydrologic indicators. One commonly
used suite of metrics for characterizing the impact of regulation
on flow regimes are the Indicators of Hydrologic Alteration (IHA)
developed by Richter et al. (1996) of The Nature Conservancy.
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The IHA contains 33 hydrologic parameters that characterize the
intra- and inter-annual variation in flows, according to the follow-
ing five characteristics of flow regimes: magnitude of monthly
streamflows, magnitude and duration of annual extreme flows,
timing of annual extreme flows, frequency and duration of high
and low pulses, rate and frequency of flow changes (Mathews
and Richter, 2007). Similar to most other proposed indicators,
many IHA parameters are intercorrelated (Olden and Poff, 2003),
promoting a level of numerical redundancy and potentially com-
plicating environmental flow assessments (Arthington et al. 2006).

Developing a small number of statistics that capture key compo-
nents of ecologically relevant flow variation will: (1) contribute to a
general approach for characterizing flow alteration, (2) minimize
statistical redundancy and computational effort in future analyses,
and (3) facilitate our ability to obtain Pareto-optimal solutions for
environmental flow schemes (see Shiau and Wu, 2006, 2007; Suen
and Eheart, 2006). Pareto-optimal solutions for environmental flow
schemes involve a determination of the tradeoffs between human
water supply and ecological flow objectives. While there are a wide
range of possible water supply objectives, ranging from such con-
cepts as vulnerability, resilience and reliability, to water quality,
security and cost, many studies simply focus on a single objective
such as reliability. By comparison, there is no accepted single or
even small set of environmental or instream flow objectives. Thus
one of the biggest current challenges associated with balancing hu-
man and ecological flow needs involves a determination of a small
set of representative indicators which reflect alteration to ecologi-
cal flow regimes. This is the subject of our paper.

Previous studies have sought to explore redundancy among
hydrologic metrics. For example, Olden and Poff (2003) used prin-
cipal component analysis (PCA) to evaluate patterns of statistical
variation among 171 published hydrologic indicators and con-
cluded that the 33 IHAs capture the majority of the variation,
and thus can be used to represent the major aspects of the flow re-
gime. Similarly, Yang et al. (2008) identified a small subset of
hydrologic indicators that were the most representative of ecolog-
ical flow regimes. They evaluated three approaches (genetic pro-
gramming, principal component analysis and autecology matrix)
resulting the selection of six IHA parameters (Date of minimum,
Rise Rate, Number of reversals, 3-day maximum, 7-day minimum
and May flow) as the most ecologically relevant hydrologic indica-
tors (ERHIs).

The primary goal of our study is to determine, among a large
suite of indicators of hydrologic alteration, the combination of sta-
tistics that best provide an overall measure of hydrologic alter-
ation. For this purpose, we consider the suite of IHA statistics, as
well as a few generalized indicators of the ecological flow regimes
termed the Dundee Hydrological Regime Alteration Method
(DHRAM) (Black et al., 2005) and the recently introduced indices
termed ecosurplus and ecodeficit (Vogel et al., 2007).
Table 1
Thirty-three indicators of hydrologic alteration.

October flow September flow Number of zero-flow daysa

November flow 1-day minimum Base flow index
December flow 3-day minimum Date of minimum
January flow 7-day minimum Date of maximum
February flow 30-day minimum Low pulse count
March flow 90-day minimum Low pulse duration
April flow 1-day maximum High pulse count
May flow 3-day maximum High pulse duration
June flow 7-day maximum Rise rate
July flow 30-day maximum Fall rate
August flow 90-day maximum Number of reversals

a This parameter is excluded from the study.
Methodology

Data

The IHA is a suite of statistics developed by The US Nature Con-
servancy (http://www.nature.org/) to assess the degree of hydro-
logic alteration caused by human activities. It consists of 67
parameters, which are subdivided into two groups-33 IHA param-
eters and 34 EFC (Environmental Flow Component) parameters.
These hydrologic parameters were developed based on their eco-
logical relevance and their ability to reflect human-induced
changes in flow regimes across a broad range of influences includ-
ing dam operations, water diversions, ground-water pumping, and
landscape modification (Mathews and Richter, 2007). The IHA
parameters, listed in Table 1, are the subject of this study (see
IHA User’s Manual (The Nature Conservancy, 2006) for definition
of the parameters). A common approach to assessing hydrologic
alteration involves a comparison of flow regimes between pres-
ent-day (impacted) and past (unimpacted) time periods. Following
Richter et al. (1996), we considered the percentage change in the
median values of the IHA parameters between unregulated (pre-
dam) and regulated (post-dam) flow regimes for two sets of
streamflow data, a simulated set and an empirical set. The param-
eter ‘‘number of zero-flow days” was excluded from the analysis,
because there was no zero-flow day for most of the gages during
the unregulated periods in our study; thus the percentage of
change could not be computed because the denominator was zero.

The simulated data series was the same series introduced by
Vogel et al. (2007) for the purpose of evaluating a wide range of
reservoir release policies corresponding to a wide range of hypo-
thetical reservoir systems all simulated for a single river. The
unregulated streamflow data in the simulated data set come from
the USGS gage 01333000 (Green River at Williamstown, MA; drain-
age area = 110 km2), and the regulated streamflow, for the simu-
lated data set, are generated from the water management
software, Water Evaluation And Planning System (WEAP), devel-
oped by the Stockholm Environment Institute (Yates et al., 2005).
Streamflow regulation in this case refers to 12 release rules operat-
ing on eight imaginary reservoirs with storage ratios (ratio of stor-
age capacity S to mean annual inflow l) in the range of 0.01–3 (see
Vogel et al., 2007 for further details). Hence, the number of obser-
vations of the simulated streamflow series is 12 � 8 = 96. Since this
dataset is only based on a single river gage, we felt it was impor-
tant to expand our experiment by using another dataset, described
below, which employs actual streamflow data subject to a variety
of flow alteration schemes from many rivers and dams.

A second data set, termed the empirical data set, is a set of
streamflow data from 189 USGS streamflow gages in third-
through seventh-order rivers distributed across the continental
US. Flow gages were located 0.1–74 km downstream of dams
(mean = 17 km). The following criteria were used to ensure that
the record of each gage reflected the influence of a single dam:
(1) no pre-existing upstream mainstem dam, (2) at least 15 years
of daily streamflow data both before and after the dam completion
date, (3) no more than two tributary inputs between the upstream
dam and the gage, and (4) no dams on tributaries with an esti-
mated drainage area larger than the mainstem river of the candi-
date dam (see Poff et al., 2007 for more details). Fig. 1 shows the
locations of the 189 dams. No information is available regarding
the type of reservoir release rules employed by these dams.

Multicollinearity of IHA statistics

Figs. 2 and 3 illustrate boxplots of the correlation coefficients
between each IHA statistic and the remaining 31 IHA statistics

http://www.nature.org/
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Fig. 1. Location of the 189 dams of the empirical data set.
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Fig. 2. Correlation coefficients among the IHA statistics for the simulated data set.
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Fig. 3. Correlation coefficients among the IHA statistics for the empirical data set.
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for the simulated and empirical data sets, respectively. As shown in
the figures, some of the IHA statistics are highly correlated. The
absolute values of the correlation coefficients among the IHA sta-
tistics in the simulated data set range from 0.002 to 1.00, with a
mean of 0.45 with many larger than 0.95. The absolute values of
the correlation coefficients in the empirical data set range from
0.0 to 0.993, with a mean of 0.194. The correlations among statis-
tics are not as strong in the empirical data set, but still there are
several correlation coefficients that are higher than 0.95.

Figs. 2 and 3 document that the IHA statistics are highly inter-
correlated. Hence a principal component analysis (PCA) was con-
ducted in Section 3 to reduce the dimensionality of the IHA data
set while retaining as much of the variation inherent in the original
data set as possible. This analysis enabled us to examine patterns
of intercorrelation among the IHA statistics, thus providing an ap-
proach to select a subset of statistically non-redundant IHA
parameters.

Generalized indices: eco-flow statistics and DHRAM

Several researchers have developed generalized indices to eval-
uate the overall impact of streamflow regulation on flow regimes.
Vogel et al. (2007) introduced the nondimensional metrics of eco-
deficit and ecosurplus, which are based on a flow duration curve
(FDC). Importantly the ecodeficit and ecosurplus can be computed
over any time period of interest (month, season, or year) and re-
flect the overall loss or gain, respectively, in streamflow due to flow
regulation during that period (Vogel et al., 2007). The ecosurplus
and ecodeficit can be computed using either a period of record
FDC or a median annual FDC which is used here (see Vogel and
Fennessey, 1994, for further details). A median annual FDC reflects
the variability of daily streamflow during a typical or median year.
The bold curve in Fig. 4 is the median annual FDC for a stream that
is not subject to regulation and the dotted curve represents the
median annual FDC for the same stream subject to regulation.
The area below the unregulated FDC and above the regulated
FDC represents the amount of water now unavailable to river
due to flow alteration caused by the withdrawal. Ecodeficit is then
defined as the ratio of this area over the total area under the unreg-
ulated median annual FDC. This ratio represents the fraction of
streamflow no longer available to the river during that period.
Conversely, ecosurplus is the area above the unregulated FDC
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Fig. 4. Corresponding areas of ecodeficit and ecosurplus between
and below the regulated FDC divided by the total area under the
unregulated median FDC. Thus, ecodeficit and ecosurplus are
dimensionless measures which represent the deficit or surplus of
streamflow resulting from flow alteration, as a fraction of the mean
streamflow in a typical or median year. It is also important to men-
tion that the ecodeficit and ecosurplus can be computed using di-
rect ecological measures such as habitat suitability measures. See
Vogel and Fennessey (1995) for a discussion of how habitat suit-
ability indices can be used in combination with FDC’s.

In this study, we divide the year into three seasons: spring
(March–June), winter (November–February) and summer (July–
October), and computed both the annual and seasonal ecodeficits
and ecosurpluses. We also introduce a new overall index of hydro-
logic alteration termed total seasonal ecochange, which is the sum
of all the seasonal ecodeficits and ecosurpluses within a year. The
prefix ‘‘eco” is added to the word deficit and surplus, because that
any change in the natural flow regime can impair ecological integ-
rity, depending on the magnitude, timing, duration, and frequency
of those deviations (Poff et al., 1997). Hence, we hypothesize that
both ecosurplus and ecodeficits are important metrics of ecosys-
tem health. Even though FDCs do not account for the timing of
streamflows, the use of seasonal ecodeficit and ecosurplus can cap-
ture some timing impacts (Vogel et al., 2007). We term this new
class of nine metrics the eco-flow statistics.

Another generalized index of hydrologic alteration is the Dun-
dee Hydrological Regime Alteration Method (DHRAM) developed
by Black et al. (2005) to assess the severity and extent of human
alteration to hydrologic regimes. DHRAM yields a score (from 0
to 30) based on the overall percentage of change in the 33 IHA
parameters before and after streamflow regulation. The higher
the score, the greater the impact the system has on the flow regime
and higher the risk of damage to the ecosystem. The score enables
one to determine the DHRAM class between Class 1 (Un-impacted
condition) and Class 5 (severely impacted condition) (Black et al.,
2005). The raw DHRAM scores, not the final class designation, were
used in the present study.

IHA subset selection using PCA

The power of PCA lies in finding a subset of the matrix of origi-
nal variables X to represent as much as possible of the overall inter-
nal variation of X. When p, the number of variables observed, is
 0.5           0.6          0.7          0.8          0.9            1

ce Probability
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large as is the case here for the IHA statistics, it is often the case
that a subset of m variables, with m << p, contains virtually all
the information available in all p variables (Jolliffe, 2002). Fig. 5
shows the percentage of variation explained by the PCs in each
data set. To explain the same amount of overall variation in the
data sets, more PCs were needed in the empirical data set than
in the simulated data. This was expected because the empirical
data set represented a much richer variation in both streamflow re-
gimes and reservoir regulation, as data came from 189 different
river basins. Several statistical methods are available to determine
the number of PCs to be retained without losing the ability to ex-
plain a significant amount of the original variation. The Kaiser-
Guttman criterion, which retains PCs with k > 1.0 (Jackson, 1993),
is used in this study. Therefore, the first 4 PCs, which explained
91.6% of the variation, were retained for the simulated data set.
The first 8 PCs, which explained 77.7% of the variation, were re-
tained for the empirical data set.

Next, a single variable (i.e. one IHA statistic) was selected to
represent each of the retained PCs. The variable that has the high-
est loading (in absolute value) on a PC is selected to represent that
PC (Dunteman, 1989). Table 2 summarizes the loadings of the four
PCs retained for the simulated data set and Table 3 summarizes the
loadings of the eight PCs retained for the empirical data set. The
resulting representative IHA parameters for the simulated data
are May flow, 30-day minimum, Date of maximum and Rise rate.
They represent particular facets of the flow regime that are rela-
tively independent of one another, because they are derived from
different PCs (Olden and Poff, 2003). The resulting eight represen-
tative parameters for the empirical data are November flow, Febru-
ary flow, March flow, June flow, 30-day minimum, 7-day
maximum, High pulse duration and Rise rate.

A close examination of Tables 2 and 3 reveals that the IHA sta-
tistics that have similar values of loadings form clusters, which are
highlighted using gray shading in the tables. Such a clustering ef-
fect is more prominent in PCs that explain a greater degree of var-
iation. The clusters indicate which group of IHA statistics
dominate, or relate to, a particular PC and, therefore, can be used
to interpret the PC axis. For example, in the simulated data set,
PC1 was related to both monthly flow statistics and high flow mag-
nitude statistics, PC2 was related to base flow magnitude and
monthly flow, and PC3 was related to high flow magnitude and
rate of change of the flow. PC 4 showed mixed loadings with no
particular dominance or clustering of IHA statistics observed.
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In the empirical data set, PC1 can be interpreted as being dom-
inated by base flow magnitude and monthly flow; PC2 can be
interpreted as being dominated by high flow magnitude; PC3 can
be interpreted as monthly flow, rate of change and frequency;
PC4 can be interpreted as monthly flow and rate of change; PC5
can be interpreted by monthly flow and frequency; and PC6 can
be interpreted by timing of extreme events. Both PC7 and PC8
show mixed loadings and no dominance or clustering by any group
of IHA statistics.

In the above analyses, the selection of dominant IHA statistics
using ks and loadings is arbitrary. For example, if we had decided
to retain only 60% of the variation of the original data, we would
have retained fewer PCs. To avoid the arbitrary nature of the above
analysis and its associated uncertainty, another approach was to
develop a comprehensive or overall index that can represent all
of the 32 IHA parameters. Additional analyses were performed to
evaluate if any of the generalized indices such as the eco-flow sta-
tistics or DHRAM was an effective overall index and to confirm if
the above selected subsets of IHA statistics were truly representa-
tive indicators of hydrologic alteration.

Analysis 1 – multiple linear regression: generalized index vs.
the 32 IHA statistics

This analysis evaluated whether the generalized indices, eco-
deficit, ecosurplus or DHRAM, were correlated to the 32 IHA statis-
tics and if they could be considered as an effective overall measure
to represent the entire set of IHA statistics. A separate multiple lin-
ear regression (MLR) was performed for each of the 10 generalized
indices using the 32 IHA parameters as the predictor (explanatory)
variables for each data set. The names of the 10 generalized indices
and the results from this analysis are given in Table 4.

For the simulated data set, almost all of the generalized indices
(except winter and spring ecosurplus) had adjusted coefficient of
determination (R2-adj) values in excess of 0.99. In contrast, for
the empirical data set, only three generalized indices had R2-adj
values that exceeded 0.8: total seasonal ecochange (0.807), sum-
mer ecosurplus (0.929) and winter ecosurplus (0.919). Across both
datasets, the three generalized indices, total seasonal ecochange,
summer ecosurplus and winter ecosurplus, explained the most
variability in the 32 IHA statistics. Furthermore, those three eco-
flow statistics explained much more of the variability in IHA statis-
tics than the DHRAM index for the empirical data set.
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Table 2
Loadings for the first four PCs of the simulated data set.

Note: The value in bold italics for each PC is the highest loading corresponding to that PC.
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Analysis 2 – Pearson’s r and Kendal’s Tau between a generalized
index and an individual PC

The goal of analysis 2 was to evaluate whether the various gen-
eralized indices could be used to represent the variability in the 32
IHA statistics explained by each PC. Each generalized index was
plotted against the scores of each PC. Fig. 6 is an example of such
plots. In Fig. 6, we observe a relationship between the annual eco-
deficit and the first two PCs for both data sets. In general, the rela-
tionships among the generalized indices and the PCs are nonlinear,
hence we investigated their correlation using the nonparametric
correlation coefficient, Kendall’s Tau, as well as the traditional lin-
ear measure of correlation, Pearson’s r. Fig. 7a–d shows the abso-
lute value of the two correlation coefficients. Values of the two
correlation coefficients and their p values are reported in Appendix
A.

In the simulated data set, the highest Pearson’s r and highest
Kendall’s Tau values always corresponded to either PC1 or PC2
and were always in excess of 0.5. The absolute value of the highest
Pearson’s r ranged from 0.545 (spring ecosurplus vs. PC1) to 0.987
(annual ecodeficit vs. PC1). The absolute values of the highest Ken-
dall’s Tau ranged from 0.563 (DHRAM score vs. PC1 and summer
ecodeficit vs. PC2) to 0.938 (annual ecodeficit vs. PC1).

In the empirical data set, the highest Pearson’s r values and
highest Kendall’s Tau values always occurred with the first 3 PCs,
except Pearson’s r for summer ecodeficit, which was with PC6.
The absolute values of the highest Pearson’s r ranged from 0.241
(summer ecodeficit vs. PC6) to 0.751 (winter ecosurplus vs. PC3).
The absolute values of the highest Kendall’s Tau ranged from
0.273 (summer ecodeficit vs. PC1) to 0.631 (annual ecodeficit vs.
PC2).
Analysis 3 – PCA on different subsets of the empirical data set

Since the reservoirs associated with both data sets have a wide
range of different storage ratios, we investigated if the magnitude
of the storage ratio, s = S/l, would have an impact on our analy-
ses. To investigate the effect of s on the results, the 189 dams
were divided into three subsets: (1) s < 0.1 (n = 139), (2) s < 0.01
(n = 102), (3) s > 0.01 (n = 87). Here the storage ratio can be inter-
preted as the average number of years of watershed runoff that
the reservoir can hold so that values of s = 0.01 and 0.1 represent
3.6 and 36 days of storage, respectively. We grouped the dams
into categories according to their storage ratio because Vogel
et al. (1999) show that S/l plays a key role in the behavior of
water supply reservoirs and Vogel et al. (2007) document that
reservoirs with larger storage ratios tend to have a greater impact
on the overall ecological flow regime. Results of the PCA and the
MLR between each of the generalized index and the 32 IHA statis-
tics for the subsets are shown in Fig. 8 and Tables 5 and 6. The
results of these analyses on subsets of the databases were not dif-
ferent from the results obtained earlier using the entire empirical
data set.

Discussion

PCA subset selection

The PCA resulted in the selection of four IHA statistics from
the simulated data set, eight from the empirical data set, and
eight from each subset of the empirical data set. Results of
the analyses on different subsets of the empirical data set were
not significantly different from the original empirical data set.



Table 3
Loadings for the first 8 PCs of the empirical data set.

Note: The value in bold italics for each PC is the highest loading corresponding to that PC.

Table 4
Adjusted coefficient of determination (R2-adj) of the multivariate linear regression
between a generalized index and the 32 IHA parameters for both data sets.

Generalized index Simulated data set
(n = 96)

Empirical data set
(n = 189)

Annual ecodeficit 0.998 0.603
Annual ecosurplus 0.989 0.663
Winter ecodeficit 0.990 0.453
Winter ecosurplus 0.898 0.919
Spring ecodeficit 0.995 0.699
Spring ecosurplus 0.783 0.559
Summer ecodeficit 0.998 0.296
Summer ecosurplus 0.993 0.929
Total seasonal ecochange 0.995 0.807
DHRAM score 0.988 0.540
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Hence, we conclude that storage ratio does not play a significant
role in determining which IHA statistics are most representative
of ecological flow regimes.

The six ERHIs selected by Yang et al. (2008) are date of mini-
mum, rise rate, number of reversals, 3-day maximum, 7-day min-
imum and May flow. Table 5 lists those IHA statistics that were
selected in our analyses for both data sets. The four groups of
IHA statistics selected are not exactly the same, but a closer exam-
ination reveals that most of them contain three common ele-
ments: at least one monthly flow statistic, two extreme event
statistics representing both high and low extremes, and one sta-
tistic associated with frequency of the low pulse and high pulse.
These three elements can also be seen in Yang et al.’s (2008)
selection of the six ERHIs, although our subset selection is not
the same as theirs. Similar patterns can also be found by examin-
ing the loadings of the PCs in Tables 2 and 3. There appears to be
clusters of IHA statistics that dominate each PC and each of those
clusters match with one of the three elements identified above.
Each of these elements corresponds to a certain type of ecological
influence, and one of the five flow regime characteristics identi-
fied by Richter et al. (1996).

Interpretation of the principal components and selection of the
most representative subset of indicators requires statistically sound
criteria, and should be combined with physical and biological
knowledge of the streamflow regimes of interest (Olden and Poff,
2003). In order to justify the selection of a particular subset of IHA
statistics from PCA, the ecological relevance of those parameters
needs to be demonstrated.
Effectiveness of the eco-flow statistics as overall metrics of hydrologic
alteration

In analysis 1, multivariate linear regression was performed to
investigate relationships between each of the 10 generalized indi-
ces and the 32 IHA statistics. Our results in Table 4 indicated a
strong relationship between all 10 generalized indices and the 32
IHA statistics in the simulated data set. The values of R2-adj derived
from the empirical data set (see Tables 4 and 6) are not as high as
those derived from simulated data set though a few eco-flow
statistics in the empirical data set had R2-adj values that were
higher than 0.8 (winter ecosurplus, summer ecosurplus and total
seasonal ecochange). Across both datasets, the three generalized
indices, total seasonal ecochange, summer ecosurplus and winter
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Fig. 6. Scatter plot of annual ecodeficit vs. the first two PCs (the top two plots are for the simulated data set and the bottom two plots are for the empirical data set).
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ecosurplus, explained the most variability in the 32 IHA statistics.
Furthermore, those three eco-flow statistics explained much more
of the variability in IHA statistics, than the DHRAM index for the
empirical data set.

In analysis 2, correlation coefficients (Pearson’s r and Kendal’s
Tau) were computed between each generalized index and the indi-
vidual PCs. The results indicate a strong correlation between each
generalized index and one of the first two PCs in the simulated data
set, and between a generalized index and one of the first three PCs
in the empirical data set.

In terms of correlations with the IHA statistics, DHRAM per-
forms similarly to the eco-flow statistics for the simulated data
set (Tables 4 and 6, and Fig. 7a and b), because it has similar values
of R2-adj, Kendall’s Tau and Pearson’s r values to the eco-flow sta-
tistics. However, in the empirical data set, DHRAM has generally
lower values of R2-adj, Kendall’s Tau and Pearson’s r (Tables 4
and 6, and Fig. 7c and d) than the eco-flow statistics. Therefore,
the eco-flow statistics appear to be a better generalized index than
DHRAM.
Conclusions

There is an increasing need to account for natural differences in
flow variability among rivers and to understand the importance of
such differences for the protection of freshwater biodiversity and
maintenance of goods and services that rivers provide (Arthington
et al., 2006). One should not ignore natural system complexity in
favor of simple and static environmental flow ‘‘rules” to manage
our water resources. On the other hand, there is a need to develop
a reduced suite of indices to replace the commonly used 33 IHA
parameters and to provide an accurate overall determination of
the impact of hydrologic alteration. The use of a single or just a
few indices of hydrologic alteration can minimize statistical redun-
dancy and lead to significant reductions in the complexity associ-
ated with the formulation and development of optimal reservoir
operation policies and other river regulation schemes. There
should be a balance between statistical simplicity and natural sys-
tem complexity to enable the design of logical and environmen-
tally sustainable reservoir release rules and river regulation
guidelines.

This study has sought to evaluate the ability of a set of general-
ized indices of hydrologic alteration to describe the variations in
stream discharge resulting from reservoir operating release rules.
In general, we found that the eco-flow statistics termed the ecodef-
icit and the ecosurplus can provide good overall measures of
hydrologic alteration. The annual ecodeficit appears to be the best
generalized index among all the indices in the simulated data set.
On the other hand, winter ecosurplus and summer ecosurplus ap-
pear to perform best in the empirical data set. In addition, total
seasonal ecochange appears to a good generalized index in both
data sets since it accounts for all the seasonal deficits and surpluses
and because it accounts for seasonal changes, thus taking timing of
the flow into consideration. The total seasonal ecochange resulted
in high values of R2-adj values with the 32 IHA parameters in both
data sets and all subsets of the empirical data set; and resulted in a
high correlation with PC1 even when the Pearson’s r and Kendall’s
Tau values of the seasonal ecodeficit and ecosurplus were low, as
indicated (Fig. 7a–d).

We expected the results for the simulated data set and the
empirical data set to differ, because the simulated data set only
considers a wide range of reservoir release rules for a wide range
of hypothetical reservoir systems on a single river, whereas the
empirical data set considers a wide range of reservoir release
rules for a wide range of actual reservoir systems on 189 rivers
that occur across a wide spectrum hydroclimatic regions. The
empirical data set may also contain variations in streamflow that
are not caused by the reservoirs release rules. Nevertheless, the
ecodeficit and ecosurplus indices as well as the total seasonal
ecochange statistic still appear to be good generalized indices of
hydrologic alteration. Furthermore, the eco-flow statistics are
computed in a manner that is independent of other IHA statistics,
hence they are statistical aggregates of other indicators and their
application may eliminate some of the statistical redundancy and
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Fig. 7. Absolute values of Pearson’s r and Kendall’s Tau between the generalized index and the first 4 PCs of the simulated data set (a and b) and the empirical data set (c and d).
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intercorrelation issues that plague other more commonly used
statistics. Although nine eco-flow statistics are introduced here,
it is our intention to advance only a few such statistics to avoid
intercorrelation.

Our results are specific to the two data sets employed. Future
work should be conducted to extend our analyses using other data
sets where reservoir operating rules are better understood and
controlled, other types of river regulation schemes, as well as other
methods for selecting ERHI’s including the bootstrap approach
introduced by Yu et al. (1998) and the genetic programming
and autecology matrix approaches introduced by Yang et al.
(2008). In addition, future research should evaluate other recently
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Table 5
Summary of PCA subset selection for the simulated data set and different subsets of the empirical data sets.

Simulated data set (n = 96) Real data real

All dams (n = 189) s < 0.1 (n = 139) s < 0.01 (n = 102) s > 0.01 (n = 87)

PC1 May flow 30-day minimum 30-day minimum 30-day minimum 7-day minimum
PC2 30-day minimum 7-day maximum 30-day maximum 30-day maximum 7-day maximum
PC3 Rise rate February flow December flow Fall rate February flow
PC4 Date of maximum November flow Fall rate May flow November flow
PC5 June flow March flow February flow June flow
PC6 March flow Date of maximum High pulse duration Date of minimum
PC7 Rise rate Date of minimum December flow October flow
PC8 High pulse duration Rise rate April flow Date of maximum

Table 6
Adjusted coefficient of determination (R2-adj) of the multivariate linear regression for different subsets of the empirical data sets.

Generalized Index All Dams (n = 189) s < 0.1 (n = 139) s < 0.01 (n = 102) s > 0.01 (n = 87)

Annual ecodeficit 0.603 0.578 0.654 0.626
Annual ecosurplus 0.663 0.738 0.825 0.554
Winter ecodeficit 0.453 0.375 0.522 0.460
Winter ecosurplus 0.919 0.940 0.883 0.938
Spring ecodeficit 0.699 0.652 0.552 0.716
Spring ecosurplus 0.559 0.756 0.821 0.487
Summer ecodeficit 0.296 0.445 0.385 0.304
Summer ecosurplus 0.929 0.857 0.912 0.928
Total seasonal ecochange 0.807 0.770 0.797 0.818
DHRAM score 0.540 0.331 0.521 0.633
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introduced generalized indices of hydrologic alteration, such the
index Do introduced in Eq. (4) of Shiau and Wu (2007) and Eqs.
(1) and (2) of Shiau and Wu (2006) and the indices recommended
by Monk et al. (2007). Importantly, future research should also
address systematic approaches for integrating indicators of
hydrologic alteration into studies which seek to integrate the
tradeoffs among various hydrologic and ecologic factors into
planning studies (Loucks 2006).

Generally, small values of the ecodeficit/ecosurplus correspond
to low values of hydrologic alteration. However, unlike DHRAM
scores, which enable water resources managers to determine the
level of risks that a particular reservoir regulation scheme has on
a river, the ecodeficit/ecosurplus does not yet include the level of
risks. Future research should: (1) investigate the hydrologic and
ecological significance of the values of ecodeficit/ecosurplus
needed to fully address the ecologically-based environmental flow
requirement; and (2) establish a system to classify what level of
ecodeficit/ecosurplus is acceptable and unacceptable for a particu-
lar reservoir operation in a river.

Acknowledgements

The first author received an EGU Young Scientist Outstanding
Poster Presentation award for her poster presentation of this re-
search at the European Geosciences Union General Assembly
2008 in Vienna, Austria – Hydrological Sciences Division. This re-
search was supported in part by a grant from the US Environ-
mental Protection Agency’s (EPA) Science to Achieve Results
(STAR) program. Although the research described in this manu-
script has been partially funded by the US EPA (NCER Grant



146 Y. Gao et al. / Journal of Hydrology 374 (2009) 136–147
X3832386), it has not been subjected to any EPA review and
therefore does not necessarily reflect the views of the Agency,
and no official endorsement should be inferred. The authors
are also grateful to Colin Apse and Mark Smith of the Nature
Conservancy, and Jack Sieber and Brian Joyce of the Stockholm
Appendix A. Values of Pearson’s r and Kendall’s Tau in experiment

(a) Pearson’s r and the corresponding p value between the generali

Generalized index PC1 PC2

r p r

Annual ecodeficit 0.987 0.000 �0.013
Annual ecosurplus �0.121 0.241 0.863
Winter ecodeficit 0.949 0.000 �0.023
Winter ecosurplus �0.356 0.000 0.565
Spring ecodeficit 0.958 0.000 0.133
Spring ecosurplus �0.545 0.000 0.219
Summer ecodeficit 0.745 0.000 �0.546
Summer ecosurplus �0.083 0.422 0.883
Total seasonal ecochange 0.988 0.000 �0.051
DHRAM score 0.759 0.000 0.497

(b) Kendall’s Tau and the corresponding p value between the generaliz

Generalized index PC1 PC2

N P s

Annual ecodeficit 0.938 0.000 �0.120
Annual ecosurplus �0.086 0.288 0.596
Winter ecodeficit 0.812 0.000 �0.061
Winter ecosurplus �0.182 0.022 0.628
Spring ecodeficit 0.892 0.000 �0.037
Spring ecosurplus �0.591 0.000 0.203
Summer ecodeficit 0.525 0.000 �0.563
Summer ecosurplus �0.063 0.434 0.727
Total seasonal ecochange 0.929 0.000 �0.128
DHRAM score 0.563 0.000 0.092

(c) Pearson’s r and the corresponding p value between the generalized

Generalized
index

PC1 PC2 PC3 PC4

r p r P r p r

Annual
ecodeficit

0.068 0.353 �0.679 0.000 �0.172 0.018 0.001

Annual
ecosurplus

�0.254 0.000 0.548 0.000 0.226 0.002 �0.028

Winter
ecodeficit

�0.006 0.935 �0.350 0.000 �0.448 0.000 �0.058

Winter
ecosurplus

�0.109 0.136 �0.032 0.663 0.751 0.000 0.491

Spring
ecodeficit

0.056 0.442 �0.706 0.000 0.103 0.159 0.273

Spring
ecosurplus

�0.163 0.025 0.432 0.000 0.027 0.711 �0.143

Summer
ecodeficit

0.142 0.051 �0.202 0.005 0.037 0.613 0.086

Summer
ecosurplus

�0.586 0.000 �0.143 0.050 �0.161 0.027 0.109

Total seasonal
ecochange

�0.437 0.000 �0.203 0.005 0.360 0.000 0.406

DHRAM score �0.438 0.000 �0.358 0.000 0.076 0.299 0.124
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zed indices and the first 4 PCs of the simulated data set.

PC3 PC4

p r p r p

0.900 �0.110 0.288 0.051 0.621
0.000 0.228 0.026 0.124 0.227
0.822 0.108 0.297 0.212 0.038
0.000 0.037 0.721 �0.117 0.255
0.197 �0.219 0.032 0.013 0.900
0.032 �0.049 0.637 �0.290 0.004
0.000 0.353 0.000 0.090 0.386
0.000 0.200 0.051 0.125 0.226
0.621 0.063 0.541 0.071 0.489
0.000 0.292 0.004 �0.188 0.067

ed indices and the first 4 PCs of the simulated data set.

PC3 PC4

p s p s p

0.086 �0.202 0.004 0.070 0.314
0.000 0.196 0.015 0.071 0.383
0.385 �0.042 0.547 0.190 0.007
0.000 0.095 0.231 �0.013 0.874
0.599 �0.230 0.001 0.087 0.212
0.012 0.002 0.982 �0.403 0.000
0.000 0.022 0.761 0.154 0.029
0.000 0.134 0.096 0.099 0.221
0.066 �0.115 0.098 0.075 0.282
0.201 0.193 0.007 0.153 0.033

indices and the first 8 PCs of the empirical data set.

PC5 PC6 PC7 PC8

p p r r p r p r p

0.986 �0.078 0.283 0.072 0.327 �0.075 0.302 0.009 0.900

0.698 �0.194 0.007 �0.072 0.322 0.167 0.021 �0.271 0.000

0.428 0.020 0.786 �0.025 0.734 0.079 0.283 �0.215 0.003

0.000 0.039 0.592 0.111 0.129 �0.029 0.688 �0.111 0.127

0.000 0.093 0.202 �0.019 0.793 �0.018 0.805 �0.087 0.236

0.049 �0.381 0.000 0.073 0.318 0.043 0.553 �0.327 0.000

0.238 �0.113 0.121 0.241 0.001 �0.181 0.013 0.054 0.462

0.135 0.106 0.147 �0.295 0.000 0.224 0.002 �0.199 0.006

0.000 0.024 0.744 �0.075 0.306 0.115 0.114 �0.295 0.000

0.089 0.011 0.880 �0.152 0.036 0.173 0.017 �0.181 0.013



(d) Kendall’s Tau and the corresponding p value between the generalized indices and the first 8 PCs of the empirical data set.

Generalized
index

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

s p s p s p s p s p s p s p s p

Annual
ecodeficit

0.111 0.023 �0.631 0.000 �0.224 0.000 �0.002 0.973 �0.080 0.102 0.106 0.031 �0.190 0.000 0.012 0.810

Annual
ecosurplus

�0.465 0.000 0.336 0.000 0.344 0.000 0.004 0.939 �0.188 0.000 �0.130 0.008 0.205 0.000 �0.062 0.203

Winter
ecodeficit

0.150 0.003 �0.290 0.000 �0.415 0.000 �0.135 0.008 0.046 0.363 �0.098 0.051 �0.099 0.051 �0.058 0.253

Winter
ecosurplus

�0.411 0.000 0.156 0.001 0.572 0.000 0.182 0.000 �0.165 0.001 �0.008 0.874 0.107 0.029 0.026 0.605

Spring
ecodeficit

0.116 0.018 �0.616 0.000 �0.152 0.002 0.116 0.018 0.062 0.206 0.009 0.854 �0.119 0.015 �0.037 0.450

Spring
ecosurplus

�0.274 0.000 0.508 0.000 0.244 0.000 �0.168 0.001 �0.252 0.000 0.021 0.676 0.072 0.143 0.031 0.530

Summer
ecodeficit

0.273 0.000 �0.141 0.006 �0.074 0.148 �0.060 0.243 0.004 0.942 0.270 0.000 �0.232 0.000 �0.070 0.171

Summer
ecosurplus

�0.508 0.000 0.014 0.775 0.087 0.077 0.051 0.296 �0.132 0.007 �0.340 0.000 0.218 0.000 0.016 0.740

Total seasonal
ecochange

�0.473 0.000 �0.100 0.041 0.171 0.000 0.145 0.003 �0.170 0.001 �0.191 0.000 0.097 0.049 0.005 0.915

DHRAM Score �0.343 0.000 �0.222 0.000 0.088 0.085 0.112 0.028 �0.050 0.321 �0.176 0.001 0.088 0.082 0.026 0.602
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