Conservation Planning and TU: Brook Trout Conservation Portfolio Assessment and Tools

Kurt Fesenmyer, Amy Haak, Shawn Rummel, Matt Mayfield, Sean McFall, and Jack Williams

How TU Uses Conservation Planning Tools

TU Brook Trout Assessments: Scales

Eastern Brook Trout Assessment Geographies

EBT Portfolio: Scales

BT Portfolio, Range-wide, and Focal Area Assessments

Conservation portfolio

Identify BT strongholds, persistent populations, and unique life histories based on EBTJV data, stream habitat diversity, and BT habitat suitability

Range-wide assessment

Characterize habitat integrity and future security of patches using widely available GIS datasets

Focal area assessment

Characterize BT populations, habitat integrity, and future security of patches using focal area-specific GIS datasets + other data or plans

Determine conservation value and strategies

Refine conservation needs and strategies "3-R" Framework: Diversity confers long-term viability in face of disturbances and environmental variability (Haak and Williams 2012)

populations

Portfolio Results – Northeast Region

Datch Size (Ha			Dom	lations	Representation									Resilient	Redundant
	Patch Size (Ha)		Populations		6			Strong-	Doroistont						
Subregion	Total	Ave.	All	Allo-	Geo. Div	Mig-	Mig-	Mig-	Mig-	Res-	Res-	Res-	No	hold	persistent
				patric	DIV.	Lake	River	R&L	Sea	个Prod	√Prod	Pond	Data	pops.	pop3.
Cape Cod	164,410	694	237	213	91	1	3	0	16	0	204	2	11	5	60
Saco-Merrimack	897,080	1,400	641	601	145	112	14	35	1	0	441	33	5	37	310
Total Coastal RI/MA/NH	1,061,490	-	878	814	236	113	17	35	17	0	645	35	16	42	370
Connecticut River	1,547,743	1,540	1,005	698	73	60	50	34	0	16	810	28	7	68	480
Total Connecticut	1,547,743	-	1,005	698	73	60	50	34	0	16	810	28	7	68	480
River															
Hudson River	1,152,275	1,419	812	385	0	75	24	17	0	18	615	50	13	23	236
Long Island Sound	515,502	863	597	380	149	17	13	2	7	1	530	7	20	8	130
Total Hudson/L.I.	1,667,777	-	1,409	765	149	92	37	19	7	19	1145	57	33	31	366
Sound															
Coastal Maine	761,195	3,368	226	226	147	63	6	23	16	0	90	20	8	37	150
Interior Maine	3,041,108	6,058	502	491	45	137	10	84	1	2	224	40	4	112	360
Northern Maine	1,783,679	17,660	101	100	0	23	4	28	0	1	26	7	12	37	68
Total Maine	5,585,982	-	829	817	192	223	20	135	17	3	340	67	24	186	578
Great Lakes	806,412	1,133	712	164	712	56	22	26	0	21	558	12	17	20	160
Saint Lawrence	1,769,823	2,493	710	249	0	125	38	53	0	14	409	66	5	54	303
Total St. Lawrence	2,576,234	-	1,422	413	712	181	60	79	0	35	967	78	22	74	463

Range-wide Assessment: Habitat Integrity

Primary factors (non-correlated, high data quality)

- Land use (% riparian forest, % agricultural land use)
- Fragmentation (Road-stream crossing density, overall road density
- Water quality (Acid deposition)

Secondary factors

Include % forested watershed, dams, mines, oil/gas wells

All factors scored as percentile, composite score is average of primary factor percentile scores

Range-wide Assessment: Habitat Integrity

Primary factors (non-correlated, high data quality)

- % riparian forest
- % agricultural land use
- Road-stream crossing density
- Overall road density
- Acid deposition

Reported as percentile scores

Range-wide Assessment: Future Security

Primary factors (non-correlated, high data quality)

• Climate: Stream temperature

Secondary factors

 Include forecast shale gas development, urbanization, karst geology, protected areas

All factors scored as percentile, composite score is average of primary factor percentile scores

Range-wide Assessment: Future Security

Primary factors (non-correlated, high data quality)

• Stream temperature

Reported as percentile scores

Brook Trout Portfolio and Range-wide Assessment

Conservation Strategies based on Portfolio and Range-wide Assessment

Conservation Strategies based on **Portfolio and Range**wide Assessment

Eastern Brook Trout Conservation Strategy - Northeast

Focal Area Assessments (Upper Connecticut, Delaware, Susquehanna, and Chesapeake Basins)

Goal: Take approach of range-wide assessment, but use regionally available or local datasets and present within a visualization tool with emphasis on restoration strategies

Datasets:

- BT occupancy and stream temperature models
- Regional conservation priorities
- State-specific designations, including exceptional waters and trout water designations.
- Regional tools, including the Riparian Restoration Decision Support Tool (Coombs and Nislow 2014).
- Regional condition and threat datasets, including North Atlantic Aquatic Connectivity Collaborative barriers, abandoned mine lands, proposed natural gas pipelines

Example 1: Identifying priority BT populations requiring a specific restoration activity within a focal geography

Objective: Identify riparian restoration opportunities in the Delaware Basin

Criteria:

- Patch has coldwater habitat likely to remain viable under future climate scenarios (Mean summer temperature in Letcher (Ecosheds) model < 17°C)
- Patch has some riparian restoration need (% mean canopy cover range is 60-80%)
- Patch is high value brook trout population (is resilient or redundant)

Tools: Delaware Basin focal area tool and Appalachian LCC Riparian Decision Support Tool

Focal Area Data Visualization Tool

Focal Area Data Visualization Tool

Focal Area Data Visualization Tool

Moderate probability of EBT persistence under future climate scenarios (which can be elevated w/ restoration of riparian conditions)

Direct access to Riparian Decision Support Tool for evaluating on-theground opportunities

Locate patch of interest in EBTJV Decision Support Tool

Locate patch of interest

Turn on canopy cover layer

Turn on stream corridor, zoom to area with low canopy cover in corridor

Turn off canopy cover and explore aerial imagery

Example 2: Placing a local restoration effort within a range-wide brook trout context

Objective: Evaluate several potential culvert removal projects in the Ammonoosuc River basin of NH and articulate project value to brook trout.

Criteria: Conservation Portfolio habitat condition and future security percentile scores

Tools: Conservation Portfolio and Range-wide Assessment map viewer

Portfolio and Range-wide Assessment webmap

Esn Warld Geor.com

Welcome to the EBT Rangewide Assessment web mapping application.

To interact with the map, simply pan and zoom with your mouse controls or with the zoom controls on the left of the map pane. You can search for place names in the 'Search locations' textbox.

Several widgets are provided in the bottom center. Hover over each and a description will appear. Click 'Legend' to view a legend which will help interpret map layers. Click 'Layer List' to view a list of the layers and turn them on and off. Most layers are turned off by default. Click 'Basemap Gallery' to pick a new basemap layer. Basemaps that may be particularly interesting to you are the 'USA Topographic' basemap (USGS topo quads) and the 'Imagery' basemap, which provides very high resolution aerial imagery and resolves to higher resolution as you zoom in. Finally, there are four filtering widgets that can be used to apply thresholds to four of the layers.

Within the layer list, keep in mind that many layers are grouped. Anytime there is a small arrow/triangle next to the layer name you can click the layer name and further expand the group.

You can also view the table for layers that are turned on in the map by clicking the 'Attribute Table' widget at the bottom right.

Do not show this splash screen again.

ОК

E. Garmin, FAO, NOAA, USGS, SPA, 1995 I WAVE, USGS, SPA, Earl

Move mouse to get poordinates yes

Moncton

THEF

Fredericton

dia.

Layers tool

Add data tool

For More Information/Links to Reports and Data Visualization Tools

https://www.tu.org/science/conservation-planning-andassessment/conservation-portfolio/eastern-brook-troutconservation-portfolio/

Eastern Brook Trout Joint Venture

easternbrooktrout.org

