
ONCORHYNCHUS CLARKII BOUVIERI

Rev. 2.0 - 9/2009

SPECIES SUMMARY

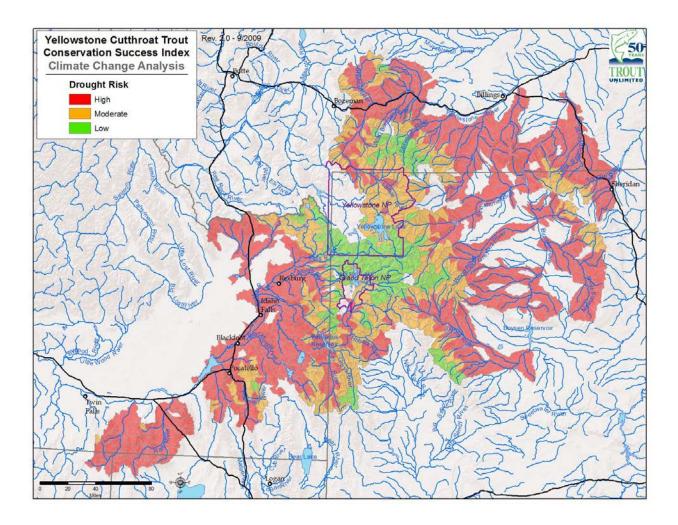
Yellowstone cutthroat trout (YCT) are spring/early summer spawners with three main life history patterns found among and even within populations. Resident fish remain in a relatively small stream area their entire life, while fluvial and adfluvial fish migrate from mainstem rivers and lakes, respectively, to tributaries to spawn.

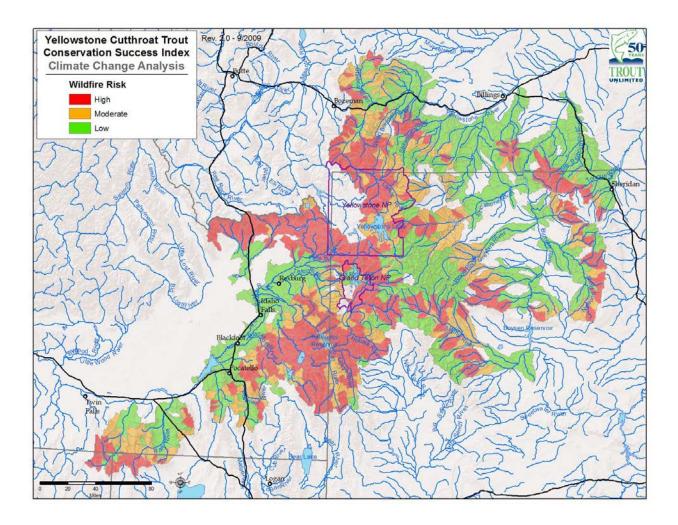
Historic Range Relief Map

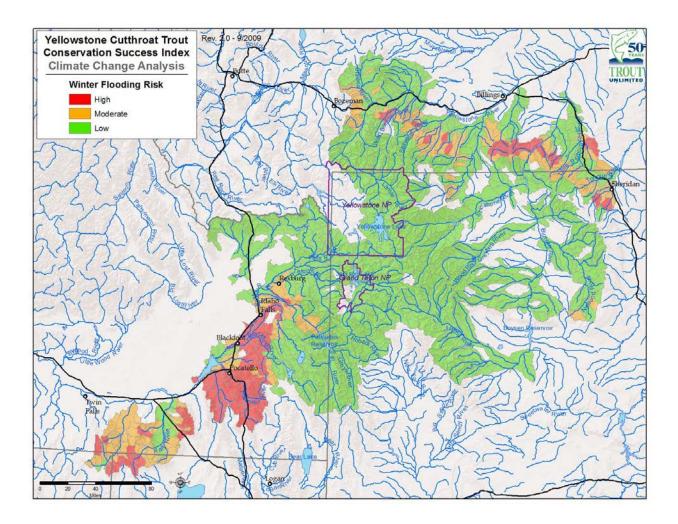
Historically, these fish occupied much of the Yellowstone River basin spreading across southern Idaho, Montana, northwestern Wyoming, and small regions of Nevada and Utah. Today, however, genetically pure YCT are found in less than half of their historic range and are mostly restricted to waters within the boundaries of Yellowstone and Grand Teton National Parks and surrounding Forest Service lands. Despite an earlier petition, the species is not Federally listed under the ESA, but is widely characterized as a "sensitive species" or "species of special concern" by agencies. The 88,000-acre Yellowstone Lake still houses the largest population of cutthroat – of any kind – to be found anywhere in the world. This stronghold, however, is now in jeopardy, as the highly piscivorous lake trout was introduced illegally and repeatedly into the lake in the 1980s and '90s. Aside from the Yellowstone Lake population, other YCT populations have also been impacted by various introduced salmonids including rainbow trout, which pose a hybridization threat, as well as brown and brook trout. Whirling disease and the New Zealand mud snail are also now present in drainages within the Yellowstone National Park and may present future threats to the species.

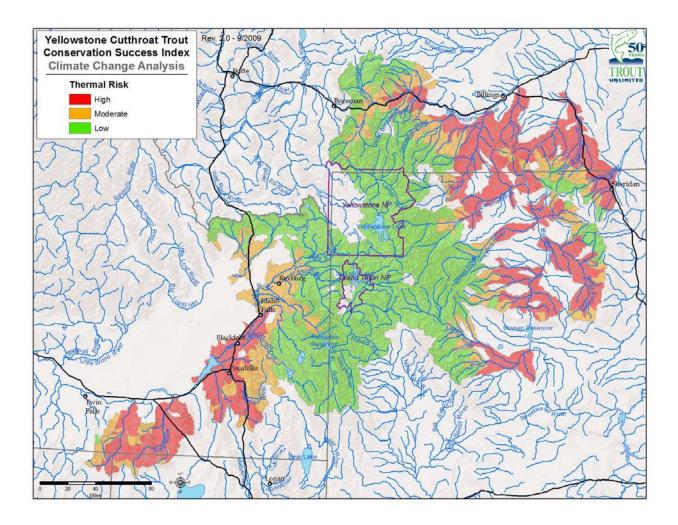
For the CSI, YCT were scored for various factors falling under the 4 basic categories of Range-wide Condition, Population Integrity, Habitat Integrity, and Future Security, and these scores were used to prioritize management actions.

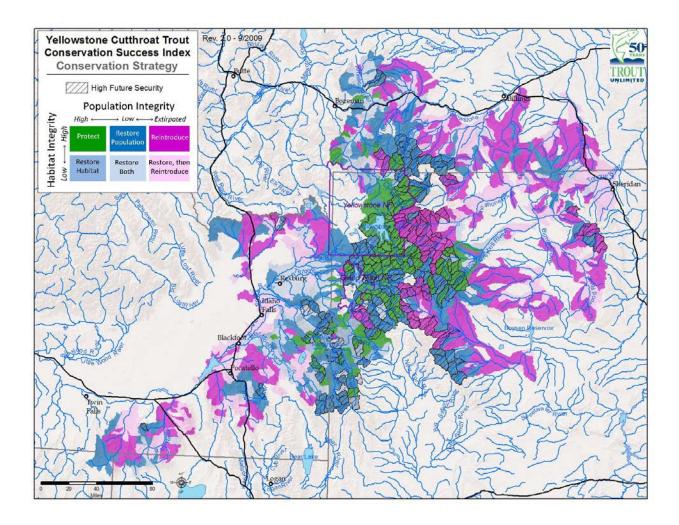
Key CSI Findings


- 49% of watersheds within historic range are currently occupied (= 511 of 1042)
- 58% of extant populations had a total CSI score > 80 (out of 100)
- Median Range-wide Condition score (extant populations only) = 22/25 (range 10-25)
- Median Population Integrity score (extant populations only) = 18/25 (range 6-24)
- Median Habitat Integrity score = 19/25 (range 5-25)
- Median Future Security score = 21/25 (range 13-24)
- % of watersheds prioritized for specific management actions:
 - 31% protection
 - 50% reintroduction
 - 19% restoration

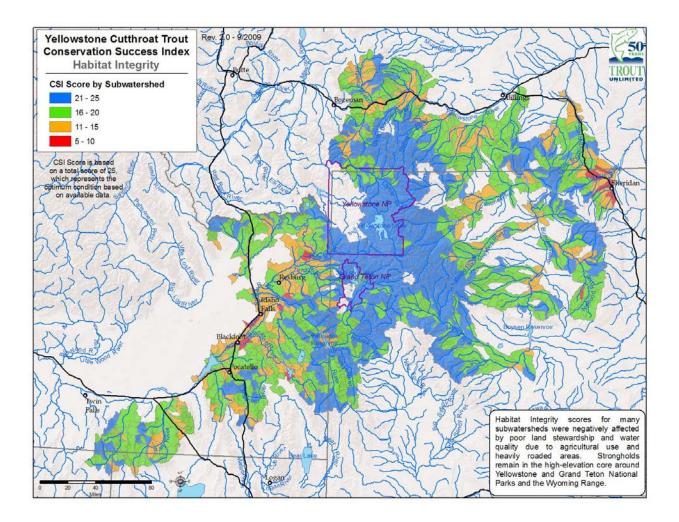

Many watersheds have lost YCT populations so only Habitat Integrity and Future Security could be scored, leading to a low total CSI score for these watersheds. Several specific threats to YCT were identified through the CSI. Habitat Integrity scores were negatively affected by poor land stewardship and water quality, while many Population Integrity scores were lowered by introgression with exotic species (threatening genetic integrity) and vulnerability to disease. Under the Future Security category, climate change and introduced species posed the biggest threats to the future welfare of the species. Due to the loss of local populations in many watersheds still retaining relatively high-quality habitat, reintroductions are a priority for management activities. Reintroductions must, however, be planned

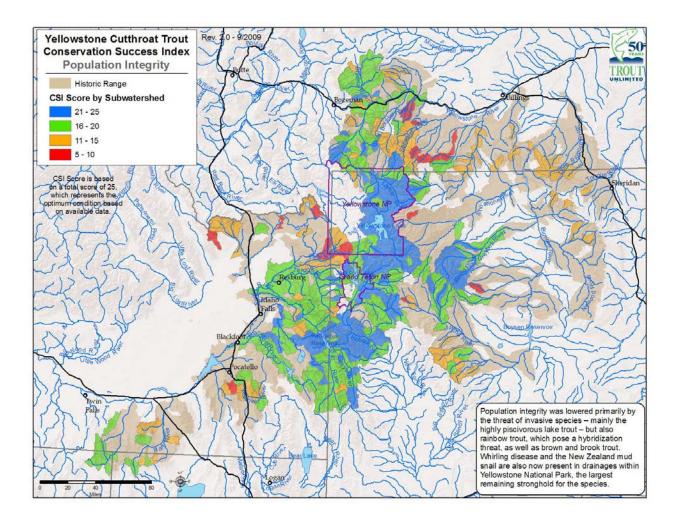


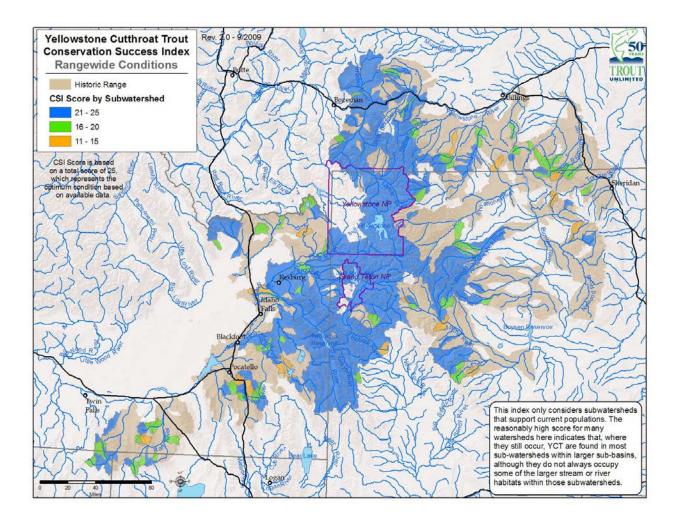

in conjunction with management of exotic species, the primary threat to YCT.

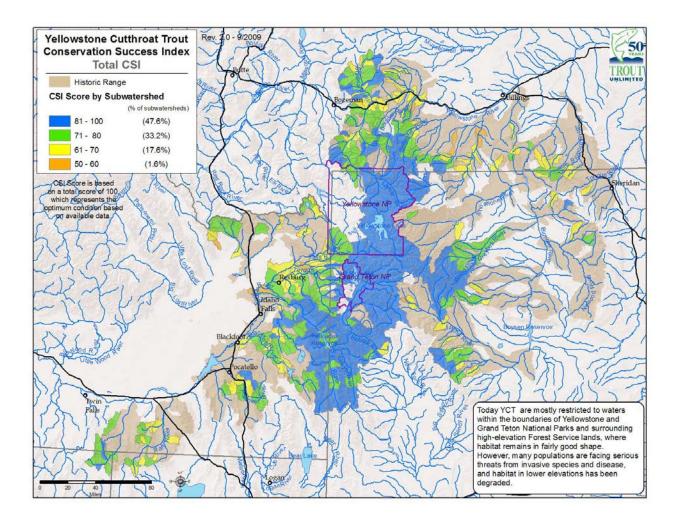

Written by Helen Neville, TU, 11/16/06











Conservation Success Index Yellowstone and Snake River Fine Spotted Cutthroat Trout Rule Set

April 2008

Range-wide Conditions

Scored for conservation populations as defined by assessment using different historic ranges for the two species.

Historic habitat is all perennial streams and connected, natural lakes across historic range. Lakes less than 2 hectares that are connected to streams are considered stream habitat while lakes greater than 2 hectares or isolated lakes are calculated as lake habitat.

1. Percent historic stream habitat occupied. Portions of the stream network that coincide with natural lakes in the assessment data should be excluded as stream habitat.

Occupied stream habitat	CSI Score
0 - 9%	1
10 - 19%	2
20-34%	3
35 - 49%	4
50 - 100%	5

- May, B.E., W. Urie, B.B. Shephard and the Yellowstone Cutthroat Interagency Coordination Group. 2003. Range-wide status of Yellowstone cutthroat trout (*Oncorhynchus clarki bouvieri*): 2001. Yellowstone Cutthroat Interagency Coordination Group, Boise, Idaho.
- 2. Percent subbasins occupied.

Percent subbasins occupied	CSI Score
1-49%	1
50-69%	2
70-79%	3
80-89%	4
90-100%	5

Source: May et al. 2003.

U.S. Geologic Survey, Subbasins (4th order HUCs), 1:2,000,000, July 2005.

3. Subwatersheds occupied within subbasin.

Percent subwatersheds occupied by subbasin	CSI Score
1 - 20%	1
21-40%	2
41-60%	3
61-80%	4
81-100%	5

Source: May et al. 2003.

- U.S. Department of Agriculture, Idaho, Wyoming Geographic Information Science Center, Idaho Department of Water Resources, Montana Natural Resources Information System. Subwatersheds, 6th order HUCs
- 4. Habitat by stream order occupied.

Occupied 2 nd order streams	CSI Score
and higher	
0-9%	1
10-14%	2
15 - 19%	3
20-24%	4
25 - 100%	5

Source: May et al. 2003.

US Geological Survey, National Hydrography Dataset Plus, 1:100,000.

5. Historic lake habitat occupied.

All natural lakes within historic range are counted as historic lake habitat. Current lake habitat is based on intersection of stream network for conservation populations with lakes.

Occupied lake habitat	CSI Score
0-9%	1
10-19%	2
20-34%	3
35 - 49%	4
50-100%	5

Source: May et al. 2003.

US Geological Survey, National Hydrography Dataset Plus, 1:100,000.

Population Integrity

Scored for conservation populations based on rangewide assessment. Lake populations were incorporated as a linear distance.

1. Density – uses tables on Population Size and Fish Presence/Abundance.

Presence/Abundance	Population Size	CSI Score
R (rare)	any	1
C (common)	4 (< 50)	2
C (common)	3 (50 – 500)	3
C (common)	2 (500 – 2,000)	4
C (common)	1 (GT 2,000)	5
A (abundant)	any	5

Source: May et al. 2003.

2. Population Extent – based on risk table Temporal Variability.

Rank	CSI Score
4 (LT 10 km connected)	1
3 (10-25 km connected)	2
	3
2 (25-75 km connected)	4
1 (GE 75 km connected)	5

Source: May et al. 2003.

3. Genetic Purity – based on table Fish Presence Genetics.

Genetics Rank	CSI Score
C (hybridized GT 25%)	1
B (hybridized LT 25%)	2
J (suspected hybridized)	2
N (hybridized and pure)	3
H (potentially unaltered)	4
A (pure)	5

Source: May et al. 2003.

4. Disease Vulnerability – based on tables Fish Presence (competing species), Isolation Risk and Fish Presence Restoration Efforts .

Competing Species	Isolation	CSI Score
Yes	1/2	1
Yes	3/4	2
No	1	3
No	2	4
No	3/4	5

Source: May et al. 2003.

5. Life History Diversity – three potential: resident, fluvial, and ad-fluvial. Use risk table for Isolation Risk to determine if migratory (fluvial) is present. Otherwise assume resident and check for lake (ad-fluvial).

Isolation Risk	Lake	CSI Score
4 (isolated)	Historic yes, present no	1
3 (questionable)	Historic yes, present no	2
3 (questionable)	Historic yes, present yes	3
	or historic no, present no	
1 or 2	Historic yes, present no	3
2 (migratory present but weak	Historic yes, present yes	4
connection)	or historic no, present no	
1 (migratory forms present)	Historic yes, present yes	5
	or historic no, present no	

Source: May et al. 2003.

US Geological Survey, National Hydrography Dataset Plus, 1:100,000.

Habitat Integrity

Scored for all subwatersheds in historic range.

1. Land Stewardship – score using AND between two indicators

Protected occupied habitat	Subwatershed protection	CSI Score
none	any	1
1 - 9%	LT 25%	1
1 - 9%	GE 25%	2
10 - 19%	LT 25%	2
10 - 19%	GE 25%	3
20 - 29%	LT 50%	4
20 - 29%	GE 50%	5
GE 30%	any	5

Source: National Atlas, Federal Land Status.

Tele Atlas/GDT, Protected areas, 1:100,000. 2004.

- U.S. Department of Agriculture, Forest Service, Geospatial Service and Technology Center. Inventoried Roadless Areas.
- 2. Watershed Connectivity (use barriers data provided with assessment and dam data.)

Current/historic connectivity 6th	CSI Score
LT 50%	1
50 - 74%	2
75 - 89%	3
90-94%	4
95 - 100%	5
Commune / In the second second sector the Ethi	

Current/historic connectivity 5^{th:}

- GT 90%: +1
- LT 50%: -1

Source: May et al. 2003.

- US Army Corps of Engineers, Dams, March 22, 2006.
- US Geological Survey, National Hydrography Dataset Plus, 1:100,000.

3. Watershed Conditions

Land conversion	CSI Score
GE 30%	1
20-29%	2
10-19%	3
5-9%	4
0 - 4%	5

CSI score is downgraded 1 point if road density is GE 1.7 and LT 4.7 mi/square mile. If road density is GE 4.7 mi/square mile it is downgraded 2 points.

Source: Tele Atlas North America, Inc./Geographic Data Technology, Inc., ESRI. Roads. 2005.

U.S. Geologic Survey, Idaho, Oregon, Washington, Wyoming GAP Analysis Project (100 meter). Land cover/Land use.

4. Water Quality

Miles 303(d)	Percent	Number	Strm mi/rd	CSI
Streams	Agricultural Land	Active Mines	mi*	Score
GT 0	58-100%	GE 10	0.5 - 1.0	1
	28-57%	7-9	0.25 - 0.49	2
	16-27%	4-6	0.24 - 0.10	3
	6-15%	1-3	0.05 - 0.09	4
	0-5%	0	0 - 0.04	5

Score for worst case.

Source: Tele Atlas North America, Inc./Geographic Data Technology, Inc., ESRI. Roads. 2005.

- U.S. Environmental Protection Agency. 303(d) streams, 1:24,000; 2002.
- US Geological Survey, National Hydrography Dataset Plus, 1:100,000.
- U.S. Geologic Survey, Idaho, Oregon, Washington, Wyoming GAP Analysis Project (100 meter). Land cover/Land use.

- U.S. Geological Survey, Mineral Resources Data System: U.S. Geological Survey, Reston, Virginia. Active Mines. 2005.
- 5. Flow Regime

Number of	Storage (acre-	CSI Score
diversions	ft)/stream mile	
GE 30	GE 2,500	1
20 - 29	1,000 - 2,499	2
10 - 19	250 - 999	3
5 – 9	1-249	4
LT 5	0	5
	diversions GE 30 20 - 29 10 - 19 5 - 9	diversionsft)/stream mileGE 30GE 2,50020 - 291,000 - 2,49910 - 19250 - 9995 - 91 - 249

Score for worst case.

Source: U.S. Army Corps of Engineers. Dams, March 22, 2006

US Geological Survey, National Hydrography Dataset Plus, 1:100,000.

Future Security

Scored for all subwatersheds in historic range.

1. Land Conversion – modeled based on slope, land ownership, roads, and urban areas.

Land Vulnerable to Conversion	CSI Score
81 - 100%	1
61 - 80%	2
41 - 60%	3
21 - 40%	4
0-20%	5

Sources: National Atlas, Land ownership.

Tele Atlas/GDT, Population centers, 1:300,000; 1997.

Tele Atlas/GDT, Road network, 1:100,000; 2002.

USGS Digital Elevation Model. 30 meter.

2. Resource extraction

Oil and gas	Mine Claims	CSI
leases/reserves		Score

	% of	
	Subwatershed	
51-100%	51 -100%	1
26 - 50%	26-50%	2
11 - 25%	11-25%	3
1 - 10%	1 - 10%	4
0%	0%	5

Use percent of protected land within subwatershed as qualifier. 25 – 50% protected – 1 additional point GT 50% protected – 2 additional points Score for worst case.

- Source: Hyndman, Paul C., and Campbell, Harry W., Digital Databases Containing Mining Claim Density Information for Arizona, California, Colorado, Idaho, Montana, Nebraska, New Mexico, Nevada, Oregon, South Dakota, Utah, Washington, and Wyoming Created From the BLM Mining Claim Recordation System: 1996: U.S. Geological Survey Open-File Report 99-325. Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, 6/30/2005, comap_v4_final_public
- U.S. Department of Energy, EPCA. Oil and gas reserves, 2005.
- 3. Flow Modification based on INEL hydropower potential data set.

New Dams 5th	New Dams 6th	CSI Score
GE 0	GE 2	1
GE 1	1	2
GE 0	1	3
GE 1	0	4
0	0	5

Source: U.S. Department of Energy, Idaho National Laboratory, Water energy resource assessment of the United States, 1995 - 1998.

4. Climate Change – Based on TU Climate Change analysis, which focuses on 3 identified risk factors related to climate change-

- a. Increased Summer Temperature- loss of lower-elevation (higher-order) habitat
- b. Increased Winter Flooding- Rain-on-snow events lead to more and larger floods

TU Climate Change Analysis			
Climate Risk	CSI Score		
Factors			
(High, Mod., Any)	1		
(Mod., Mod., Mod.)	2		
OR (High, Low, Low)			
(Mod., Mod., Low)	3		
(Low, Low, Mod.)	4		
(Low, Low, Low)	5		

c. Increased Wildfire- earlier spring snowmelt coupled with warmer temperatures results in drier fuels and longer burning, more intense wildfire

Source: PRISM Group, Oregon State University. Mean July Temperature, 1970 – 2000. 800 meter.

PRISM Group, Oregon State University. Monthly Precipitation Normals, 1970 – 2000. 800 meter.

U.S. Forest Service, LANDFIRE Fire Behavior Fuel Model 13. 2006.

USGS Digital Elevation Model. 30 meter.

5. Introduced Species – do not currently have rangewide data on introduced species.

Present in	Present in	Road Density	CSI Score
5th	6th		
Yes	Yes	any	1
Yes	No	GT 4.7	2
Yes	No	1.7 - 4.7	3
Yes	No	LT 1.7	4
No	No	any	5

Source: May et al. 2003.

Tele Atlas North America, Inc./Geographic Data Technology, Inc., ESRI. Roads. 2005.